This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347496 #7 Sep 03 2021 20:56:57 %S A347496 1,2,9,12,25,50,120,344,400,770,1120,3920,13566,13734,19845,22748, %T A347496 148148,167854,176220,889896,2946216,3685416,5072256,7139280,8521056, %U A347496 9058900,9625336,17825857,19392072,27504848,76952788,106691001,162789696,198582784,212847225 %N A347496 Primorial base Niven numbers (A333426) with a record gap to the next primorial base Niven number. %C A347496 The corresponding gaps are 1, 2, 3, 4, 5, 10, 12, 16, 20, 34, 37, 48, 54, 66, 75, 121, 132, 146, 180, 238, 241, 248, 288, 302, 314, 332, 336, 343, 348, 400, 476, 479, 484, 496, 500, ... %e A347496 The first 8 primorial base Niven numbers are 1, 2, 4, 6, 8, 9, 12 and 16. The gaps between them are 1, 2, 2, 2, 1, 3 and 4. The record gaps, 1, 2, 3 and 4, occur after the terms 1, 2, 9 and 12. %t A347496 max = 7; bases = Prime @ Range[max, 1, -1]; nmax = Times @@ bases - 1; sumdig[n_] := Plus @@ IntegerDigits[n, MixedRadix[bases]]; primoNivenQ[n_] := Divisible[n, sumdig[n]]; gapmax = 0; n1 = 1; s = {}; Do[If[primoNivenQ[n], gap = n - n1; If[gap > gapmax, gapmax = gap; AppendTo[s, n1]]; n1 = n], {n, 2, nmax}]; s %Y A347496 Cf. A333426, A333427, A337076, A337077, A347495. %K A347496 nonn,base %O A347496 1,2 %A A347496 _Amiram Eldar_, Sep 03 2021