This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347498 #27 Sep 09 2021 09:37:58 %S A347498 1,2,3,5,6,7,9,11,13,15,17,19,20,23,25,28,29,31,33,37,40,41,42,43,47, %T A347498 51,53,55,57,59,61,67,69,71,73,75,79,83 %N A347498 Least k such that there exists an n-element subset S of {1,2,...,k} with the property that all products i * j are distinct for i <= j. %C A347498 a(n) <= A066720(n) and a(n+1) >= a(n) + 1 %F A347498 a(n) = min {k >= 1; A338006(k) = n}. - _Pontus von Brömssen_, Sep 09 2021 %e A347498 n | example set %e A347498 -----+------------------------------------------------------- %e A347498 1 | {1} %e A347498 2 | {1, 2} %e A347498 3 | {1, 2, 3} %e A347498 4 | {1, 2, 3, 5} %e A347498 5 | {1, 3, 4, 5, 6} %e A347498 6 | {1, 3, 4, 5, 6, 7} %e A347498 7 | {1, 2, 5, 6, 7, 8, 9} %e A347498 8 | {1, 2, 5, 6, 7, 8, 9, 11} %e A347498 9 | {1, 2, 5, 6, 7, 8, 9, 11, 13} %e A347498 10 | {1, 2, 5, 7, 8, 9, 11, 12, 13, 15} %e A347498 11 | {1, 2, 5, 7, 8, 9, 11, 12, 13, 15, 17} %e A347498 12 | {1, 2, 5, 7, 8, 9, 11, 12, 13, 15, 17, 19} %e A347498 13 | {1, 5, 6, 7, 9, 11, 13, 14, 15, 16, 17, 19, 20} %e A347498 14 | {1, 2, 5, 7, 11, 12, 13, 16, 17, 18, 19, 20, 21, 23} %e A347498 For n = 4, the set {1,2,3,4} does not have distinct products because 2*2 = 1*4. However, the set {1,2,3,5} does have distinct products because 1*1, 1*2, 1*3, 1*5, 2*2, 2*3, 2*5, 3*3, 3*5, and 5*5 are all distinct. %t A347498 Table[k=1;While[!Or@@(Length[s=Union[Sort/@Tuples[#,{2}]]]==Length@Union[Times@@@s]&/@Subsets[Range@k,{n}]),k++];k,{n,12}] (* _Giorgos Kalogeropoulos_, Sep 08 2021 *) %o A347498 (Python) %o A347498 from itertools import combinations, combinations_with_replacement %o A347498 def a(n): %o A347498 k = n %o A347498 while True: %o A347498 for Srest in combinations(range(1, k), n-1): %o A347498 S = Srest + (k, ) %o A347498 allprods = set() %o A347498 for i, j in combinations_with_replacement(S, 2): %o A347498 if i*j in allprods: break %o A347498 else: allprods.add(i*j) %o A347498 else: return k %o A347498 k += 1 %o A347498 print([a(n) for n in range(1, 15)]) # _Michael S. Branicky_, Sep 08 2021 %Y A347498 Analogous for sums: A003022 and A227590. %Y A347498 Cf. A066720, A338006, A347499. %K A347498 nonn,more %O A347498 1,2 %A A347498 _Peter Kagey_, Sep 03 2021 %E A347498 a(15)-a(20) from _Michael S. Branicky_, Sep 08 2021 %E A347498 a(21)-a(38) (based on the terms in A338006) from _Pontus von Brömssen_, Sep 09 2021