cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347529 Irregular triangle read by rows: T(n,k) is the sum of the subparts of the symmetric representation of sigma(n) that arise from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616, n >= 1, k >= 1, and the first element of column k is in row A000384(k).

This page as a plain text file.
%I A347529 #89 Jun 16 2023 03:17:00
%S A347529 1,3,4,7,6,11,1,8,0,15,0,10,3,18,0,12,0,23,5,14,0,24,0,16,7,1,31,0,0,
%T A347529 18,0,0,35,4,0,20,0,0,39,0,3,22,10,0,36,0,0,24,0,0,47,13,0,26,0,5,42,
%U A347529 0,0,28,12,0,55,0,0,1,30,0,0,0,59,6,7,0,32,0,0,0,63,0,0,0,34,14,0,0
%N A347529 Irregular triangle read by rows: T(n,k) is the sum of the subparts of the symmetric representation of sigma(n) that arise from the (2*k-1)-th double-staircase of the double-staircases diagram of n described in A335616, n >= 1, k >= 1, and the first element of column k is in row A000384(k).
%C A347529 Conjecture 1: the number of nonzero terms in row n equals A082647(n).
%C A347529 Conjecture 2: column k lists positive integers interleaved with 2*k+2 zeros.
%C A347529 The k-th column of the triangle is related to the (2*k+1)-gonal numbers. For further information about this connection see A347186 and A347263.
%C A347529 If n is prime then the only nonzero term in row n is T(n,1) = 1 + n.
%C A347529 If n is a power of 2 then the only nonzero term in row n is T(n,1) = 2*n - 1.
%C A347529 If n is an even perfect number then there are two nonzero terms in row n, they are T(n,1) = 2*n - 1 and the last term in the row is 1.
%C A347529 If n is a hexagonal number then the last term in row n is 1.
%C A347529 Row n contains a subpart 1 if and only if n is a hexagonal number.
%C A347529 First differs from A279388 at a(10), or row 9 of triangle.
%H A347529 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a>
%e A347529 Triangle begins:
%e A347529 ---------------------------
%e A347529    n / k   1   2   3   4
%e A347529 ---------------------------
%e A347529    1 |     1;
%e A347529    2 |     3;
%e A347529    3 |     4;
%e A347529    4 |     7;
%e A347529    5 |     6;
%e A347529    6 |    11,  1;
%e A347529    7 |     8,  0;
%e A347529    8 |    15,  0;
%e A347529    9 |    10,  3;
%e A347529   10 |    18,  0;
%e A347529   11 |    12,  0;
%e A347529   12 |    23,  5;
%e A347529   13 |    14,  0;
%e A347529   14 |    24,  0;
%e A347529   15 |    16,  7,  1;
%e A347529   16 |    31,  0,  0;
%e A347529   17 |    18,  0,  0;
%e A347529   18 |    35,  4,  0;
%e A347529   19 |    20,  0,  0;
%e A347529   20 |    39,  0,  3;
%e A347529   21 |    22, 10,  0;
%e A347529   22 |    36,  0,  0;
%e A347529   23 |    24,  0,  0;
%e A347529   24 |    47, 13,  0;
%e A347529   25 |    26,  0,  5;
%e A347529   26 |    42,  0,  0;
%e A347529   27 |    28, 12,  0;
%e A347529   28 |    55,  0,  0,  1;
%e A347529 ...
%e A347529 For n = 15 the calculation of the 15th row of the triangle (in accordance with the geometric algorithm described in A347186) is as follows:
%e A347529 Stage 1 (Construction):
%e A347529 We draw the diagram called "double-staircases" with 15 levels described in A335616.
%e A347529 Then we label the five double-staircases (j = 1..5) as shown below:
%e A347529                                _
%e A347529                              _| |_
%e A347529                            _|  _  |_
%e A347529                          _|   | |   |_
%e A347529                        _|    _| |_    |_
%e A347529                      _|     |  _  |     |_
%e A347529                    _|      _| | | |_      |_
%e A347529                  _|       |   | |   |       |_
%e A347529                _|        _|  _| |_  |_        |_
%e A347529              _|         |   |  _  |   |         |_
%e A347529            _|          _|   | | | |   |_          |_
%e A347529          _|           |    _| | | |_    |           |_
%e A347529        _|            _|   |   | |   |   |_            |_
%e A347529      _|             |     |  _| |_  |     |             |_
%e A347529    _|              _|    _| |  _  | |_    |_              |_
%e A347529   |_ _ _ _ _ _ _ _|_ _ _|_ _|_|_|_|_ _|_ _ _|_ _ _ _ _ _ _ _|
%e A347529   1               2     3   4 5
%e A347529 .
%e A347529 Stage 2 (Debugging):
%e A347529 We remove the fourth double-staircase as it does not have at least one step at level 1 of the diagram starting from the base, as shown below:
%e A347529                                _
%e A347529                              _| |_
%e A347529                            _|  _  |_
%e A347529                          _|   | |   |_
%e A347529                        _|    _| |_    |_
%e A347529                      _|     |  _  |     |_
%e A347529                    _|      _| | | |_      |_
%e A347529                  _|       |   | |   |       |_
%e A347529                _|        _|  _| |_  |_        |_
%e A347529              _|         |   |     |   |         |_
%e A347529            _|          _|   |     |   |_          |_
%e A347529          _|           |    _|     |_    |           |_
%e A347529        _|            _|   |         |   |_            |_
%e A347529      _|             |     |         |     |             |_
%e A347529    _|              _|    _|    _    |_    |_              |_
%e A347529   |_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _|
%e A347529   1               2     3     5
%e A347529 .
%e A347529 Stage 3 (Annihilation):
%e A347529 We delete the second double-staircase and the steps of the first double-staircase that are just above the second double-staircase.
%e A347529 The new diagram has two double-staircases and two simple-staircases as shown below:
%e A347529                                _
%e A347529                               | |
%e A347529                  _            | |            _
%e A347529                _| |          _| |_          | |_
%e A347529              _|   |         |     |         |   |_
%e A347529            _|     |         |     |         |     |_
%e A347529          _|       |        _|     |_        |       |_
%e A347529        _|         |       |         |       |         |_
%e A347529      _|           |       |         |       |           |_
%e A347529    _|             |      _|    _    |_      |             |_
%e A347529   |_ _ _ _ _ _ _ _|_ _ _|_ _ _|_|_ _ _|_ _ _|_ _ _ _ _ _ _ _|
%e A347529   1                     3     5
%e A347529 .
%e A347529 The diagram is called "ziggurat of 15".
%e A347529 The number of steps in the staircase labeled 1 is 8. There is a pair of these staircases, so T(15,1) = 2*8 = 16, since the symmetric representation of sigma(15) is also the base of the three dimensional version of the ziggurat .
%e A347529 The number of steps in the double-staircase labeled 3 is equal to 7, so T(15,2) = 7.
%e A347529 The number of steps in the double-staircase labeled 5 is equal to 1, so T(15,3) = 1.
%e A347529 Therefore the 15th row of triangle is [16, 7, 1].
%e A347529 The top view of the 3D-Ziggurat of 15 and the symmetric representation of sigma(15) with subparts look like this:
%e A347529                                 _                                     _
%e A347529                                |_|                                   | |
%e A347529                                |_|                                   | |
%e A347529                                |_|                                   | |
%e A347529                                |_|                                   | |
%e A347529                                |_|                                   | |
%e A347529                                |_|                                   | |
%e A347529                                |_|                                   | |
%e A347529                           _ _ _|_|                              _ _ _|_|
%e A347529                       _ _|_|      36                        _ _| |      8
%e A347529                      |_|_|_|                               |  _ _|
%e A347529                     _|_|_|                                _| |_|
%e A347529                    |_|_|  1                              |_ _|  1
%e A347529                    |    34                               |    7
%e A347529     _ _ _ _ _ _ _ _|                      _ _ _ _ _ _ _ _|
%e A347529    |_|_|_|_|_|_|_|_|                     |_ _ _ _ _ _ _ _|
%e A347529                     36                                    8
%e A347529 .
%e A347529      Top view of the 3D-Ziggurat.        The symmetric representation of
%e A347529      The ziggurat is formed by 3        of sigma(15) is formed by 3 parts.
%e A347529    polycubes with 107 cubes             It has 4 subparts with 24 cells in
%e A347529    in total. It has 4 staircases       total. It is the base of the ziggurat.
%e A347529        with 24 steps in total.
%e A347529 .
%Y A347529 Another (and more regular) version of A279388.
%Y A347529 Row sums give A000203.
%Y A347529 Row n has length A351846(n).
%Y A347529 Cf. A347263 (analog for the ziggurat diagram).
%Y A347529 Cf. A000040, A000079, A000384, A000396, A082647, A196020, A235791, A236104, A237591, A237270, A237271, A237593, A279387, A262626, A335616, A346875, A347186.
%K A347529 nonn,tabf
%O A347529 1,2
%A A347529 _Omar E. Pol_, Sep 05 2021