A346913 Irregular triangle read by rows where each row is the level sequence of a rooted tree in Beyer and Hedetniemi's iteration.
1, 1, 2, 1, 2, 3, 1, 2, 2, 1, 2, 3, 4, 1, 2, 3, 3, 1, 2, 3, 2, 1, 2, 2, 2, 1, 2, 3, 4, 5, 1, 2, 3, 4, 4, 1, 2, 3, 4, 3, 1, 2, 3, 4, 2, 1, 2, 3, 3, 3, 1, 2, 3, 3, 2, 1, 2, 3, 2, 3, 1, 2, 3, 2, 2, 1, 2, 2, 2, 2, 1, 2, 3, 4, 5, 6, 1, 2, 3, 4, 5, 5, 1, 2, 3, 4, 5, 4
Offset: 1
Examples
Triangle begins v=1 v=2 v=3 v=4 v=5 n=1: 1 n=2: 1, 2 n=3: 1, 2, 3 n=4: 1, 2, 2 n=5: 1, 2, 3, 4 n=6: 1, 2, 3, 3 n=7: 1, 2, 3, 2 n=8: 1, 2, 2, 2 n=9: 1, 2, 3, 4, 5 n=10: 1, 2, 3, 4, 4 Row n=35 is levels sequence 1,2,3,2,3,2 which is tree: level 1: 1 root | \ \ level 2: 2 4 6 children of root | | level 3: 3 5 Beyer and Hedetniemi give the following example of the successor function (except a misprint omits one end-most 2), which here is row n=7726: q p end row n: 1,2,3,4,3,2,2,2,2,2,2,2 ^^^^^ block q..p-1 row n+1: 1,2,3,4,2,3,4,2,3,4,2,3 ^^^^^ ^^^^^ ^^^ block copies Vertices p..end are not a multiple of q..p-1 block length 3, so a final partial block copy.
Links
- Kevin Ryde, Table of n, a(n) for rows 1 to 1205 (trees <= 10 vertices), flattened
- Terry Beyer and Sandra Mitchell Hedetniemi, Constant Time Generation of Rooted Trees, SIAM Journal of Computing, volume 9, 1980, pages 706-712.
- Kevin Ryde, PARI/GP Code for Iterating
Crossrefs
Programs
-
PARI
\\ See links.
Comments