cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347541 Numbers q.r such that q*r divides q.r, when q and r have the same number of digits, "." means concatenation, and r may not begin with 0.

Original entry on oeis.org

11, 12, 15, 24, 36, 1352, 1734, 143143, 167334, 16673334, 1666733334, 166667333334, 16666673333334, 1666666733333334, 142857143142857143, 166666667333333334, 16666666673333333334, 1666666666733333333334, 166666666667333333333334, 16666666666673333333333334, 1666666666666733333333333334, 142857142857143142857142857143
Offset: 1

Views

Author

Bernard Schott, Oct 11 2021

Keywords

Comments

Problem proposed on French site Diophante (see link).
We have to solve Diophantine equation q.r = q*10^m + r = k * q * r where m = length(q) = length(r). Some results:
k can only take values 2, 3, 6, 7, 11, and ratio r/q = 1, 2, 4 or 5.
There are exactly 3 subsequences of terms that are solutions, one finite and two infinites:
-> Finite subsequence: 11, 12, 15, 36, 1352.
-> Infinite subsequence with k = 7 and r = q = (10^(6h-3)+1)/7, h>=1 (A147553 \ {1}), hence terms are (10^(6h-3)+1)^2/7 for h>=1: {143143, 142857143142857143, ... }.
-> Infinite subsequence with k = 3 and r = 2q, with q = (10^h+2)/6, r = (10^h+2)/3 for h>= 1: {24, 1734, 167334, 16673334, ...} (A348589).
Consequence: integers q.q that are divisible by q*q are exactly integers such that q is a term of A147553. If q = A147553(1) = 1, then 11/(1*1) = 11, while for q = A147553(n), n>=2, then q.q / (q*q) = 7.
Note that the first five terms are the 2-digit Zuckerman numbers (A007602).

Examples

			One example for each possible value of k = q.r / (q*r).
a(1) = 11 and 11/(1*1) = 11.
a(2) = 12 and 12/(1*2) = 6.
a(5) = 36 and 36/(3*6) = 2.
a(7) = 1734 and 1734/(17*34) = 3.
a(8) = 143143 and 143143/(143*143) = 7.
		

Crossrefs