cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347546 Number of involutions of doubly alternating Baxter permutations of length n.

This page as a plain text file.
%I A347546 #20 Jun 29 2022 02:50:48
%S A347546 1,1,1,1,2,2,3,5,8,12,16,32,44,84,105,231,292,636,768,1792,2166,5080,
%T A347546 6012,14592,17234,42198,49336,123088,143536,361190,418971,1066497,
%U A347546 1234242,3164870,3651296,9436968,10866726,28255468,32469716,84925632,97443786,256131058
%N A347546 Number of involutions of doubly alternating Baxter permutations of length n.
%H A347546 Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, <a href="https://arxiv.org/abs/2206.13877">Pattern avoiding alternating involutions</a>, arXiv:2206.13877 [math.CO], 2022.
%H A347546 Sook Min, <a href="https://doi.org/10.14403/jcms.2021.34.3.253">The Enumeration of Involutions of Doubly Alternating Baxter Permutations</a>, Journal of the Chungcheong Mathematical Society, 34(3) (2021), 253-257.
%o A347546 (Python)
%o A347546 def b(n):
%o A347546     if (0<=n<=3):
%o A347546         return 1
%o A347546     if (n==4):
%o A347546         return 2
%o A347546     if (n%2==1):
%o A347546       t=0
%o A347546       for k in range(1, ((n+1)//2)):
%o A347546           t+=b(2*k-2)*b(n-2*k)
%o A347546       return t
%o A347546     else:
%o A347546         s=0
%o A347546         for j in range(round(n/4), (n//2)):
%o A347546             s+=b(4*j-n)*b(n-2*j-1)
%o A347546         return b(n-1)+s
%o A347546 for i in range(30):
%o A347546     print(str(i)+': '+str(b(i)))
%Y A347546 Cf. A001181.
%K A347546 nonn
%O A347546 0,5
%A A347546 _Sook Min_, Sep 06 2021