cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347551 Number of minimum dominating sets in the 2n-crossed prism graph.

This page as a plain text file.
%I A347551 #16 Feb 27 2025 17:50:01
%S A347551 4,51,8,170,16,476,32,1224,64,2992,128,7072,256,16320,512,36992,1024,
%T A347551 82688,2048,182784,4096,400384,8192,870400,16384,1880064,32768,
%U A347551 4038656,65536,8634368,131072,18382848,262144,38993920,524288,82444288,1048576,173801472
%N A347551 Number of minimum dominating sets in the 2n-crossed prism graph.
%H A347551 Andrew Howroyd, <a href="/A347551/b347551.txt">Table of n, a(n) for n = 2..1000</a>
%H A347551 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/CrossedPrismGraph.html">Crossed Prism Graph</a>
%H A347551 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/MinimumDominatingSet.html">Minimum Dominating Set</a>
%H A347551 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,4,0,-4).
%F A347551 a(n) = 2^((n/2)+1) for n even.
%F A347551 From _Andrew Howroyd_, Jan 18 2022: (Start)
%F A347551 a(n) = 17*n*2^((n-3)/2) for n odd.
%F A347551 a(n) = 4*a(n-2) - 4*a(n-4) for n > 5.
%F A347551 G.f.: x^2*(4 + 51*x - 8*x^2 - 34*x^3)/(1 - 2*x^2)^2.
%F A347551 (End)
%t A347551 Table[Piecewise[{{17 n 2^((n - 3)/2), Mod[n, 2] == 1}, {2^((n/2) + 1), Mod[n, 2] == 0}}], {n, 2, 20}] (* _Eric W. Weisstein_, Feb 27 2025 *)
%t A347551 CoefficientList[Series[(4 + 51 x - 8 x^2 - 34 x^3)/(1 - 2 x^2)^2, {x, 0, 20}], x] (* _Eric W. Weisstein_, Feb 27 2025 *)
%o A347551 (PARI) a(n) = if(n%2, 17*n*2^((n-3)/2), 2^((n/2)+1)) \\ _Andrew Howroyd_, Jan 18 2022
%Y A347551 Cf. A287062, A291772, A302946.
%K A347551 nonn
%O A347551 2,1
%A A347551 _Eric W. Weisstein_, Sep 06 2021
%E A347551 Terms a(11) and beyond from _Andrew Howroyd_, Jan 18 2022