This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347561 #30 Oct 24 2021 08:45:42 %S A347561 4,11,13,19,47,719,1439,2879,4079,4127,5807,6047,7247,7727,9839,10799, %T A347561 11279,13967,14159,15647,21599,24527,28319,28607,42767,44687,45887, %U A347561 48479,51599,51839,67247,68639,72767,77279,79967,81647,84047,84719,89087 %N A347561 Numbers m such that Conv(b,m) = b has a unique nontrivial solution (b = 0 and b = 1 are considered trivial solutions). Here, Conv(b,m) denotes the limit of b^^t (mod m) as t goes to infinity. %C A347561 A101793 is a subsequence. %C A347561 It appears that a(n) = A101793(n-4) for n>=5. %C A347561 Except for n = 1, a(n) is prime. %H A347561 Wikipedia, <a href="https://en.wikipedia.org/wiki/Tetration">Tetration</a> %H A347561 <a href="/index/Te#tetration">Index entries for sequences related to tetration</a> %e A347561 For a(2), we have: %e A347561 Conv(2,11) = 9 %e A347561 Conv(3,11) = 9 %e A347561 Conv(4,11) = 4 %e A347561 Conv(5,11) = 1 %e A347561 Conv(6,11) = 5 %e A347561 Conv(7,11) = 2 %e A347561 Conv(8,11) = 3 %e A347561 Conv(9,11) = 5 %e A347561 Conv(10,11) = 1 %e A347561 Therefore, the only solution is Conv(4,11) = 4. %t A347561 Conv[b_,m_] := %t A347561 Which[ %t A347561 Mod[b,m]==0,Return[0], %t A347561 Mod[b,m]==1,Return[1], %t A347561 GCD[b,m]==1,Return[PowerMod[b,Conv[b,MultiplicativeOrder[b,m]],m]], %t A347561 True,Return[PowerMod[b,EulerPhi[m]+Conv[b,EulerPhi[m]],m]] %t A347561 ] %t A347561 a[m_] := Count[Table[Conv[b,m]==b,{b,0,m-1}],True] %t A347561 Table[If[a[i]==3,i,## &[]],{i,2,800}] %o A347561 (PARI) conv(b, n) = {if (b % n == 0, return (0)); if (b % n == 1, return (1)); if (gcd(b, n)==1, return (lift(Mod(b, n)^conv(b, lift(znorder(Mod(b, n))))))); lift(Mod(b, n)^(eulerphi(n) + conv(b, eulerphi(n))));} %o A347561 isok(m) = sum(b=2, m-1, conv(b, m) == b) == 1; \\ _Michel Marcus_, Sep 13 2021 %Y A347561 Cf. A347560, A343073, A000040, A101793, A183613. %K A347561 nonn %O A347561 1,1 %A A347561 _Bernat Pagès Vives_, Sep 06 2021