A347562 Number of ways to write n as 16^w + x^2 + (y^2 + 23*z^4)/324, where w,x,y,z are nonnegative integers.
1, 2, 2, 1, 2, 2, 2, 1, 2, 3, 3, 1, 2, 4, 1, 2, 5, 6, 4, 3, 4, 3, 4, 2, 4, 7, 4, 5, 5, 4, 2, 4, 6, 5, 4, 3, 6, 8, 2, 1, 8, 7, 6, 2, 4, 6, 2, 3, 5, 7, 6, 7, 10, 4, 1, 6, 4, 7, 4, 2, 5, 6, 6, 4, 7, 9, 5, 7, 5, 1, 3, 2, 8, 6, 4, 1, 6, 7, 3, 4, 6, 6, 7, 5, 1, 7, 2, 7, 3, 6, 5, 1, 3, 5, 5, 3, 7, 11, 4, 2
Offset: 1
Keywords
Examples
a(15) = 1 with 15 = 16^0 + 1^2 + (62^2 + 23*2^4)/324. a(156) = 1 with 156 = 16^1 + 6^2 + (139^2 + 23*5^4)/324. a(300) = 1 with 300 = 16^2 + 6^2 + (27^2 + 23*3^4)/324. a(1427) = 1 with 1427 = 16^1 + 35^2 + (71^2 + 23*7^4)/324. a(1887) = 1 with 1887 = 16^1 + 15^2 + (729^2 + 23*3^4)/324. a(4371) = 1 with 4371 = 16^1 + 63^2 + (351^2 + 23*3^4)/324.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Sums of four rational squares with certain restrictions, arXiv:2010.05775 [math.NT], 2020-2022.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]]; tab={};Do[r=0;Do[If[SQ[324(n-16^w-x^2)-23y^4],r=r+1],{w,0,Log[16,n]},{x,0,Sqrt[n-16^w]}, {y,0,(324(n-16^w-x^2)/23)^(1/4)}];tab=Append[tab,r],{n,1,100}];Print[tab]
Comments