This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347570 #33 Feb 16 2025 08:34:02 %S A347570 1,1,2,1,2,3,1,2,4,4,1,2,5,8,5,1,2,6,14,13,6,1,2,7,22,33,21,7,1,2,8, %T A347570 32,56,72,31,8,1,2,9,44,109,154,125,45,9,1,2,10,58,155,367,369,219,66, %U A347570 10,1,2,11,74,257,669,927,857,376,81,11 %N A347570 Table read by antidiagonals upward: the n-th row gives the lexicographically earliest infinite B_n sequence. %C A347570 A B_n sequence is a sequence such that all sums a(x_1) + a(x_2) + ... + a(x_n) are distinct for 1 <= x_1 <= x_2 <= ... <= x_n. %H A347570 Chai Wah Wu, <a href="/A347570/b347570.txt">Table of n, a(n) for n = 1..241</a> %H A347570 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/B2-Sequence.html">B2 Sequence</a>. %e A347570 Table begins: %e A347570 n\k | 1 2 3 4 5 6 7 8 %e A347570 ----+------------------------------------------ %e A347570 1 | 1, 2, 3, 4, 5, 6, 7, 8, ... %e A347570 2 | 1, 2, 4, 8, 13, 21, 31, 45, ... %e A347570 3 | 1, 2, 5, 14, 33, 72, 125, 219, ... %e A347570 4 | 1, 2, 6, 22, 56, 154, 369, 857, ... %e A347570 5 | 1, 2, 7, 32, 109, 367, 927, 2287, ... %e A347570 6 | 1, 2, 8, 44, 155, 669, 2215, 6877, ... %e A347570 7 | 1, 2, 9, 58, 257, 1154, 4182, 14181, ... %e A347570 8 | 1, 2, 10, 74, 334, 1823, 8044, 28297, ... %o A347570 (Python) %o A347570 from itertools import count, islice, combinations_with_replacement %o A347570 def A347570_gen(): # generator of terms %o A347570 asets, alists, klist = [set()], [[]], [1] %o A347570 while True: %o A347570 for i in range(len(klist)-1,-1,-1): %o A347570 kstart, alist, aset = klist[i], alists[i], asets[i] %o A347570 for k in count(kstart): %o A347570 bset = set() %o A347570 for d in combinations_with_replacement(alist+[k],i): %o A347570 if (m:=sum(d)+k) in aset: %o A347570 break %o A347570 bset.add(m) %o A347570 else: %o A347570 yield k %o A347570 alists[i].append(k) %o A347570 klist[i] = k+1 %o A347570 asets[i].update(bset) %o A347570 break %o A347570 klist.append(1) %o A347570 asets.append(set()) %o A347570 alists.append([]) %o A347570 A347570_list = list(islice(A347570_gen(),30)) # _Chai Wah Wu_, Sep 06 2023 %Y A347570 Cf. A000027 (n=1), A005282 (n=2), A096772 (n=3), A014206 (k=4), A370754 (k=5). %K A347570 nonn,tabl %O A347570 1,3 %A A347570 _Peter Kagey_, Sep 06 2021