A347581 The Barnyard sequence: a(n) is the minimum number of unit length line segments required to enclose areas of 1 through n on a square grid.
4, 9, 14, 20, 26, 33, 40, 47, 55, 63
Offset: 1
Examples
Example areas using the minimum number of line segments from n = 1 through n = 10 are: . __ |__| a(1) = 4 __ __ __ |__|__ __| a(2) = 9 __ __ __ |__|__ __| a(3) = 14 |__ __ __| __ __ __ |__|__ __| |__ __ __| a(4) = 20 | | |__ __| __ __ __ |__|__ __|__ |__ __ __| | a(5) = 26 | | | |__ __|__ __| __ __ __ |__|__ __|__ __ __ |__ __ __| | | a(6) = 33 | | | | |__ __|__ __|__ __| __ __ __ __ __ __|__ | |__|__ __|__ __ __| |__ __ __| | | a(7) = 40 | | | | |__ __|__ __|__ __| __ __ __ __ __ __ | | | |__ __ __ __| | | |__ __ __| a(8) = 47 |__ __ __|__ | | | | |__ __| |__ __|__|__ __|__| __ __ __ __ __ __ __ | | | | |__ __ __ __| |__ __ __|__ | |__|__ __|__ __ __| a(9) = 55 |__ __ __| | | | | | | |__ __|__ __|__ __| __ __ __ __ __ __ __ __ | __|__ | | |__ __ __| |__|__ | | | | |__| | | | | | a(10) = 63 |__ __ __|__ __|__ __|__| | | |__| |__ __ __ __ __|__ __| .
Links
- Sascha Kurz, Counting polyominoes with minimum perimeter, arXiv:math/0506428 [math.CO], 2015.
Comments