This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347584 #35 Sep 14 2021 03:49:40 %S A347584 2,1,1,3,2,3,4,5,5,4,7,9,10,9,7,11,16,19,19,16,11,18,27,35,38,35,27, %T A347584 18,29,45,62,73,73,62,45,29,47,74,107,135,146,135,107,74,47,76,121, %U A347584 181,242,281,281,242,181,121,76,123,197,302,423,523,562,523,423,302,197,123 %N A347584 Triangle formed by Pascal's rule, except that the n-th row begins and ends with the n-th Lucas number. %C A347584 Similar in spirit to the Fibonacci-Pascal triangle A074829, which uses Fibonacci numbers instead of Lucas numbers at the ends of each row. %C A347584 If we consider the top of the triangle to be the 0th row, then the sum of terms in n-th row is 2*(2^(n+1) - Lucas(n+1)). This sum also equals 2*A027973(n-1) for n>0. %H A347584 <a href="/index/Pas#Pascal">Index entries for triangles and arrays related to Pascal's triangle</a> %F A347584 a(n) = 2*A074829(n+1) - A108617(n). %e A347584 The first two Lucas numbers (for n=0 and n=1) are 2 and 1, so the first two rows (again, for n=0 and n=1) of the triangle are 2 and 1, 1 respectively. %e A347584 Triangle begins: %e A347584 2; %e A347584 1, 1; %e A347584 3, 2, 3; %e A347584 4, 5, 5, 4; %e A347584 7, 9, 10, 9, 7; %e A347584 11, 16, 19, 19, 16, 11; %e A347584 18, 27, 35, 38, 35, 27, 18; %t A347584 T[n_, 0] := LucasL[n]; T[n_, n_] := LucasL[n]; %t A347584 T[n_, k_] := T[n - 1, k - 1] + T[n - 1, k]; %t A347584 Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten %Y A347584 Cf. A000032, A027973. %Y A347584 Cf. A227550, A228196 (general formula). %Y A347584 Fibonacci borders: A074829, A108617, A316938, A316939. %K A347584 nonn %O A347584 0,1 %A A347584 _Noah Carey_ and _Greg Dresden_, Sep 07 2021