cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347595 a(0) = 1; for n>0, a(n) is the smallest positive integer that has not previously occurred such that a(n-1)^2 + n^2 + a(n) is a square.

Original entry on oeis.org

1, 2, 8, 27, 39, 54, 73, 98, 133, 186, 273, 426, 709, 1250, 2305, 4386, 8517, 16746, 33169, 65978, 131557, 262674, 524865, 1049202, 2097829, 4195034, 8389393, 16778058, 33555333, 67109826, 134218753, 268436546, 536872069, 1073743050, 2147484945, 4294968666, 8589936037, 17179870706
Offset: 0

Views

Author

Scott R. Shannon, Sep 08 2021

Keywords

Comments

This sequence uses the same rules as A347594 except here all numbers must be unique. Up to 10^5 terms all terms are larger than the previous term; it is unknown if this holds for all terms as n->infinity.

Examples

			a(1) = 2 as a(0)^2 + 1^2 = 1 + 1 = 2, and 2 + 2 = 4 = 2^2 is the next smallest square.
a(2) = 8 as a(1)^2 + 2^2 = 4 + 4 = 8, and 8 + 8 = 16 = 4^2. Note that although 8 + 1 = 9 = 3^2, 1 cannot be chosen as a(0) = 1.
a(3) = 27 as a(2)^2 + 3^2 = 64 + 9 = 73 and 73 + 27 = 100 = 10^2.  Note that although 73 + 8 = 81 = 9^2, 8 cannot be chosen as a(2) = 8.
a(4) = 39 as a(3)^2 + 4^2 = 729 + 16 = 745, and 745 + 39 = 784 = 28^2 is the next smallest square.
		

Crossrefs