This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347599 #14 Sep 10 2021 01:36:14 %S A347599 1,0,5,0,67,91,92,0,1897,2017,2018,2617,2619,2737,2738,2739,2740,3457, %T A347599 3458,3459,3460,4177,4178,4179,4180,0,99241,99961,99962,104281,104283, %U A347599 105001,105002,105003,105004,110041,110042,110043,110044,115081,115082,115083 %N A347599 Irregular table read by rows, T(n, k) is the rank of the k-th Genocchi permutation of {1,...,n}, permutations sorted in lexicographical order. If no Genocchi permutation of {1,...,n} exists, then T(n, 1) = 0 by convention. %C A347599 Let M be the n X n matrix with M(j, k) = floor((2*j - k ) / n). A Genocchi permutation of order n is a permutation sigma of {1,...,n} if Product_{k=1..n} M(k, sigma(k)) does not vanish. %C A347599 Let P(n) denote the number of Genocchi permutations of order n. _Zhi-Wei Sun_ conjectured, using permanents, that P(n - 1) = G(n), where G(n) are the Genocchi numbers A036968. From the well-known relation between Genocchi and Bernoulli numbers this implies, assuming the conjecture: %C A347599 Bernoulli(n) = P(n - 1) / ((-1)^floor(n/2)*(2^(n + 2) - 2)) for n >= 2. %C A347599 The related sequence A347600 lists Seidel permutations. %H A347599 Zhi-Wei Sun, <a href="https://mathoverflow.net/q/403386">A novel identity connecting permanents to Bernoulli numbers</a>, MathOverflow 2021-09-07. %e A347599 Table starts: %e A347599 [1] 1; %e A347599 [2] 0; %e A347599 [3] 5; %e A347599 [4] 0; %e A347599 [5] 67, 91, 92; %e A347599 [6] 0; %e A347599 [7] 1897, 2017, 2018, 2617, 2619, 2737, 2738, 2739, 2740, 3457, 3458, 3459, 3460, 4177, 4178, 4179, 4180; %e A347599 . %e A347599 The 17 permutations corresponding to the ranks are for n = 7: %e A347599 1897 -> [3571246]; 2017 -> [3671245]; 2018 -> [3671254]; 2617 -> [4571236]; %e A347599 2619 -> [4571326]; 2737 -> [4671235]; 2738 -> [4671253]; 2739 -> [4671325]; %e A347599 2740 -> [4671352]; 3457 -> [5671234]; 3458 -> [5671243]; 3459 -> [5671324]; %e A347599 3460 -> [5671342]; 4177 -> [6571234]; 4178 -> [6571243]; 4179 -> [6571324]; %e A347599 4180 -> [6571342]. %e A347599 . %e A347599 17 / (-510) = -1/30 = Bernoulli(8). %o A347599 (Julia) %o A347599 using Combinatorics %o A347599 function GenocchiPermutations(n) %o A347599 f(m) = m >= n ? 1 : m < 0 ? -1 : 0 %o A347599 Mat(n) = [[f(2*j - k) for k in 1:n] for j in 1:n] %o A347599 M = Mat(n); P = permutations(1:n); R = Int64[] %o A347599 S, rank = 0, 1 %o A347599 for p in P %o A347599 m = prod(M[k][p[k]] for k in 1:n) %o A347599 if m != 0 %o A347599 S += m %o A347599 push!(R, rank) %o A347599 end %o A347599 rank += 1 %o A347599 end %o A347599 # println(n, " ", S, " ", S // (2^(n + 2) - 2)) # Bernoulli number %o A347599 return R %o A347599 end %o A347599 for n in 1:11 println(GenocchiPermutations(n)) end %Y A347599 Cf. A036968, A226158, A027641/A027642, A347600. %K A347599 nonn,tabf %O A347599 1,3 %A A347599 _Peter Luschny_, Sep 08 2021