This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347600 #7 Sep 09 2021 09:38:24 %S A347600 2,11,17,187,211,307,331,451,452,571,572,6937,7057,7657,7777,8497, %T A347600 8498,9217,9218,11977,12097,12697,12817,13537,13538,14257,14258,17737, %U A347600 17739,17857,17859,18577,18578,18579,18580,19297,19298,19299,19300,22777,22779,22897 %N A347600 Irregular table read by rows, T(n, k) is the rank of the k-th Seidel permutation of {1,...,n}, permutations sorted in lexicographical order. %C A347600 Let M be the 2n X 2n matrix with M(j, k) = floor((2*j - k - 1) / 2*n). A Seidel permutation of order n is a permutation sigma of {1,...,2n} if Product_{k=1..2n} M(k, sigma(k)) does not vanish. %C A347600 Let P(n) denote the number of Seidel permutations of order n. We conjecture that P(n) = A005439(n). This conjecture was inspired by the conjecture of _Zhi-Wei Sun_ in A036968. The name 'Seidel permutations' follows a comment of _Don Knuth_: "The earliest known reference for these numbers (A005439) is Seidel ...." %C A347600 The related sequence A347599 lists Genocchi permutations. %e A347600 Table starts: %e A347600 [1] 2; %e A347600 [2] 11, 17; %e A347600 [3] 187, 211, 307, 331, 451, 452, 571, 572. %e A347600 . %e A347600 The 8 permutations corresponding to the ranks are for n = 3: %e A347600 187 -> [246135]; 211 -> [256134]; 307 -> [346125]; 331 -> [356124]; %e A347600 451 -> [456123]; 452 -> [456132]; 571 -> [546123]; 572 -> [546132]. %o A347600 (Julia) %o A347600 function SeidelPermutations(n) %o A347600 f(m) = m >= 2n ? 1 : m < 0 ? -1 : 0 %o A347600 Mat(n) = [[f(2*j - k - 1) for k in 1:2n] for j in 1:2n] %o A347600 M = Mat(n); P = permutations(1:2n); R = Int64[] %o A347600 S, rank = 0, 1 %o A347600 for p in P %o A347600 m = prod(M[k][p[k]] for k in 1:2n) %o A347600 if m != 0 %o A347600 S += m %o A347600 push!(R, rank) %o A347600 end %o A347600 rank += 1 %o A347600 end %o A347600 # println(n, " -> ", (-1)^n*S) %o A347600 return R %o A347600 end %o A347600 for n in 1:5 println(SeidelPermutations(n)) end %Y A347600 Cf. A005439, A036968, A347599. %K A347600 nonn,tabf %O A347600 1,1 %A A347600 _Peter Luschny_, Sep 08 2021