A346719
a(n) is the number of positive Euler permutations of order 2*n. Bisection (even indices) of A347601.
Original entry on oeis.org
1, 0, 7, 102, 8109, 642220, 89458803, 15935870034, 3858227881945, 1176448390679256, 447692501190569823, 206713705368363820990, 114132862919751113790597, 74179275137980421348697732, 56081703047542413155379531979, 48790316146471264354636437276330, 48400301382766335524903922737193393
Offset: 0
A347602
a(n) is the number of negative Euler permutations of order n.
Original entry on oeis.org
0, 0, 1, 0, 2, 28, 163, 812, 6724, 70216, 692741, 7183944, 86756038, 1155576132, 16135231015, 239656087572, 3838836369800, 65522667301840, 1178853270354697, 22361732381344592, 447322130002332298, 9399988542176154796, 206783054242756958891, 4754731473884444589756
Offset: 0
-
# Uses function EulerPermutations from A347601.
A347602 := n -> `if`(n = 0, 0, EulerPermutations(n, 'neg')):
seq(A347602(n), n = 0..8);
A347598
a(n) = permanent(T(n)), where T(n) is the tangent matrix defined in A346831 and n >= 1; by convention a(0) = 1.
Original entry on oeis.org
1, 0, -1, 2, 5, -12, -61, 230, 1385, -6936, -50521, 316682, 2702765, -20359332, -199360981, 1754340590, 19391512145, -195242324016, -2404879675441, 27266796955922, 370371188237525, -4669829301365052, -69348874393137901, 962523286888757750, 15514534163557086905
Offset: 0
-
# Uses the function TangentMatrix from A346831.
A347598 := n -> `if`(n = 0, 1, LinearAlgebra:-Permanent(TangentMatrix(n))):
seq(A347598(n), n = 0..12);
-
def TangentMatrix(N):
M = matrix(N, N)
H = (N + 1) // 2
for n in range(1, N):
for k in range(n):
M[n - k - 1, k] = 1 if n < H else -1
M[N - n + k, N - k - 1] = -1 if n < N - H else 1
return M
def A347598(n):
if n == 0: return 1
return TangentMatrix(n).permanent()
print([A347598(n) for n in range(12)])
A346720
a(n) is the number of negative Euler permutations of order 2*n. Bisection (even indices) of A347602.
Original entry on oeis.org
0, 1, 2, 163, 6724, 692741, 86756038, 16135231015, 3838836369800, 1178853270354697, 447322130002332298, 206783054242756958891, 114117348385587556703692, 74183362210489714472590093, 56080450787901009525514063694, 48790757690364513377740990959151, 48400123863374755985614486072403728
Offset: 0
A347766
Irregular table read by rows, T(n, k) is the rank of the k-th positive Euler permutation of {1,...,n}, permutations sorted in lexicographical order. If no such permutation exists, then T(n, 0) = 0 by convention.
Original entry on oeis.org
1, 0, 0, 2, 3, 1, 6, 8, 11, 14, 15, 17, 3, 8, 24, 28, 29, 30, 32, 35, 50, 55, 57, 68, 71, 74, 79, 92, 2, 6, 15, 16, 21, 26, 30, 40, 44, 54, 55, 60, 68, 99, 104, 120, 121, 123, 124, 125, 137, 138, 142, 143, 144, 146, 150, 161, 164, 167, 174, 175, 177, 179, 185
Offset: 0
Table of positive Euler permutations, length of rows is A347601:
[0] 1;
[1] 0;
[2] 0;
[3] 2, 3;
[4] 1, 6, 8, 11, 14, 15, 17;
[5] 3, 8, 24, 28, 29, 30, 32, 35, 50, 55, 57, 68, 71, 74, 79, 92.
.
The 16 permutations corresponding to the ranks are for n = 5:
3 -> [12435], 8 -> [13254], 24 -> [15432], 28 -> [21453],
29 -> [21534], 30 -> [21543], 32 -> [23154], 35 -> [23514],
50 -> [31254], 55 -> [32145], 57 -> [32415], 68 -> [35142],
71 -> [35412], 74 -> [41253], 79 -> [42135], 92 -> [45132].
-
# Uses function TangentMatrix from A346831.
EulerPermutationsRank := proc(n, sgn) local M, P, N, s, p, m, rank;
M := TangentMatrix(n); P := []; N := []; rank := 0;
for p in Iterator:-Permute(n) do
rank := rank + 1;
m := mul(M[k, p(k)], k = 1..n);
if m = 0 then next fi;
if m = 1 then P := [op(P), rank] fi;
if m = -1 then N := [op(N), rank] fi; od;
if sgn = 'pos' then P else N fi end:
A347766Row := n -> `if`(n < 3, [[1,0,0][n+1]], EulerPermutationsRank(n, 'pos')):
for n from 0 to 5 do A347766Row(n) od;
A347767
Irregular table read by rows, T(n, k) is the rank of the k-th negative Euler permutation of {1,...,n}, permutations sorted in lexicographical order. If no such permutation exists, then T(n, 0) = 0 by convention.
Original entry on oeis.org
0, 0, 1, 0, 2, 7, 4, 5, 6, 7, 10, 12, 19, 20, 27, 31, 33, 43, 44, 47, 49, 52, 54, 56, 59, 69, 73, 78, 80, 83, 86, 87, 89, 93, 1, 3, 4, 5, 17, 18, 22, 23, 24, 25, 27, 28, 29, 37, 38, 42, 43, 46, 48, 51, 52, 53, 56, 58, 61, 62, 66, 67, 72, 100, 101, 102, 103, 106
Offset: 0
Table of negative Euler permutations, length of rows is A347602:
[0] 0;
[1] 0;
[2] 1;
[3] 0;
[4] 2, 7;
[5] 4, 5, 6, 7, 10, 12, 19, 20, 27, 31, 33, 43, 44, 47, 49, ...
.
The first 8 permutations corresponding to the ranks are for n = 5:
4 -> [12453], 5 -> [12534], 6 -> [12543], 7 -> [13245],
10 -> [13452], 12 -> [13542], 19 -> [15234], 20 -> [15243].
-
# Uses function EulerPermutationsRank from A347766.
A347767Row := n -> `if`(n < 4, [[0,0,1,0][n+1]], EulerPermutationsRank(n, 'neg')): for n from 0 to 6 do A347767Row(n) od;
Showing 1-6 of 6 results.
Comments