This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347611 #27 Jun 09 2025 06:35:13 %S A347611 1,1,3,52,8925,22661496,1131162092095,1375009641495014400, %T A347611 48378633136349277767794425,57001313848230245122464621625840000, %U A347611 2552524038347870310755413660544832496799359491,4859161865915056755501262525796512204608930674134393036800 %N A347611 a(n) is the n-th n-factorial number: a(n) = n!_n. %H A347611 Alois P. Heinz, <a href="/A347611/b347611.txt">Table of n, a(n) for n = 0..36</a> %H A347611 <a href="/index/Fa#factorial">Index entries for sequences related to factorial numbers</a> %F A347611 a(n) = Product_{j=1..n} (n^j-1)/(n-1) for n > 1, a(0) = a(1) = 1. %F A347611 a(n) = A069777(n,n). %F A347611 a(n) ~ exp(1) * n^(n*(n-1)/2). - _Vaclav Kotesovec_, Jun 09 2025 %p A347611 b:= proc(n, k) option remember; `if`(n<2, 1, %p A347611 b(n-1, k)*(k^n-1)/(k-1)) %p A347611 end: %p A347611 a:= n-> b(n$2): %p A347611 seq(a(n), n=0..12); %t A347611 Array[QFactorial[#, #] &, 12, 0] (* _Michael De Vlieger_, Sep 09 2021 *) %o A347611 (PARI) a(n) = if (n<=1, 1, prod(k=1, n, (n^k-1)/(n-1))); \\ _Michel Marcus_, Sep 09 2021 %o A347611 (Python) %o A347611 from math import prod %o A347611 def a(n): %o A347611 return 1 if n <= 1 else prod((n**k - 1)//(n - 1) for k in range(1, n+1)) %o A347611 print([a(n) for n in range(12)]) # _Michael S. Branicky_, Sep 09 2021 %Y A347611 Main diagonal of A069777. %Y A347611 Cf. A366355. %K A347611 nonn %O A347611 0,3 %A A347611 _Alois P. Heinz_, Sep 08 2021