This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347621 #18 Sep 09 2021 10:41:31 %S A347621 1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,6,8,2,1,1,1,32,192,32,3,1,1,1,390, %T A347621 84756,16444,142,4,1,1,1,16444,5807301632,11784471548,3207086,668,5,1, %U A347621 1,1,4013544,2496696209705056142,16816734263788624008200,74443865946867656,1258238720,3264,6,1 %N A347621 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into distinct parts. %F A347621 T(n,k) = A000009(n^k). %e A347621 Square array begins: %e A347621 1, 1, 1, 1, 1, ... %e A347621 1, 1, 1, 1, 1, ... %e A347621 1, 1, 2, 6, 32, ... %e A347621 1, 2, 8, 192, 84756, ... %e A347621 1, 2, 32, 16444, 11784471548, ... %t A347621 Table[If[n == k == 0, 1, PartitionsQ[#^k] &[n - k]], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* _Michael De Vlieger_, Sep 09 2021 *) %o A347621 (PARI) T(n, k) = polcoef(prod(j=1, n^k, 1+x^j+x*O(x^(n^k))), n^k); %Y A347621 Columns k=0..3 give A000012, A000009, A072243, A281501. %Y A347621 Rows n=0+1, 2-3 give A000012, A067735, A070235. %Y A347621 Main diagonal gives A064682. %Y A347621 Cf. A347615, A347630. %K A347621 nonn,tabl %O A347621 0,13 %A A347621 _Seiichi Manyama_, Sep 09 2021