This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347630 #12 Sep 09 2021 10:42:22 %S A347630 1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,2,2,1,1,1,1,5,14,5,1,1,1,1,23,833, %T A347630 276,12,1,1,1,1,276,1731778,2824974,9912,33,1,1,1,1,11564, %U A347630 1741020966255,824068326214949,150145281903,602245,93,2,1,1,1,2824974,78444810948209793568790,195321031346209256918890884699755,7375247711025022789604527681,116880108216597935,57638873,276,2,1 %N A347630 Square array T(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where T(n,k) is the number of partitions of n^k into distinct odd parts. %F A347630 T(n,k) = A000700(n^k). %e A347630 Square array begins: %e A347630 1, 1, 1, 1, 1, 1, ... %e A347630 1, 1, 1, 1, 1, 1, ... %e A347630 1, 0, 1, 2, 5, 23, ... %e A347630 1, 1, 2, 14, 833, 1731778, ... %e A347630 1, 1, 5, 276, 2824974, 824068326214949, ... %e A347630 1, 1, 12, 9912, 150145281903, 7375247711025022789604527681, ... %o A347630 (PARI) T(n, k) = polcoef(prod(j=0, n^k\2, 1+x^(2*j+1)+x*O(x^(n^k))), n^k); %Y A347630 Columns k=0..2 give A000012, A000700, A281489. %Y A347630 Main diagonal gives A347626. %Y A347630 Cf. A347621. %K A347630 nonn,tabl %O A347630 0,18 %A A347630 _Seiichi Manyama_, Sep 09 2021