This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347637 #36 Jun 28 2024 01:28:32 %S A347637 7,13,15,9,21,21,15,17,35,27,11,25,25,37,33,17,21,41,33,59,39,13,29, %T A347637 31,45,41,53 %N A347637 Table read by ascending antidiagonals. T(n, k) is the minimum number of pebbles such that any assignment of those pebbles on a complete graph with n vertices is a next-player winning game in the two-player impartial (k+1, k) pebbling game. T(n, k) for n >= 5 and k >= 1. %C A347637 A (k+1, k) pebbling move involves removing k + 1 pebbles from a vertex in a simple graph and placing k pebbles on an adjacent vertex. %C A347637 A two-player impartial (k+1, k) pebbling game involves two players alternating (k+1, k) pebbling moves. The first player unable to make a move loses. %C A347637 T(3, k) = A016921(k) for k >= 0. The proof will appear in a paper that is currently in preparation. %C A347637 It is conjectured that T(4, k) for odd k>=3 is infinite, so we start with n = 5. %C A347637 T(5, k) = A346197(k) for k >= 1. %C A347637 T(n, 1) = A340631(n) for n >= 3. %C A347637 T(n, 2) = A346401(n) for n >= 3. %D A347637 E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your Mathematical Plays, Vol. 1, CRC Press, 2001. %H A347637 Kayla Barker, Mia DeStefano, Eugene Fiorini, Michael Gohn, Joe Miller, Jacob Roeder, and Tony W. H. Wong, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/Wong/wong43.html">Generalized Impartial Two-player Pebbling Games on K_3 and C_4</a>, J. Int. Seq. (2024) Vol. 27, Issue 5, Art. No. 24.5.8. See p. 4. %H A347637 Eugene Fiorini, Max Lind, Andrew Woldar, and Tony W. H. Wong, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL24/Wong/wong31.html">Characterizing Winning Positions in the Impartial Two-Player Pebbling Game on Complete Graphs</a>, J. Int. Seq., Vol. 24 (2021), Article 21.6.4. %e A347637 The data is organized in a table beginning with row n = 5 and column k = 1. The data is read by ascending antidiagonals. The formula binomial(n + k - 5, 2) + k converts the indices from table form to sequence form. %e A347637 The table T(n, k) begins: %e A347637 [n/k] 1 2 3 4 5 6 ... %e A347637 --------------------------------- %e A347637 [ 5] 7, 15, 21, 27, 33, 39, ... %e A347637 [ 6] 13, 21, 35, 37, 59, 53, ... %e A347637 [ 7] 9, 17, 25, 33, 41, 51, ... %e A347637 [ 8] 15, 25, 41, 45, 61, ... %e A347637 [ 9] 11, 21, 31, 41, 51, ... %e A347637 [10] 17, 29, 45, 53, 71, ... %e A347637 [11] 13, 25, 37, 49, 61, ... %e A347637 [12] 19, 33, 51, ... %e A347637 [13] 15, 29, 43, ... %e A347637 [14] 21, 37, ... %e A347637 [15] 17, 33, ... %e A347637 [16] 23, 41, ... %t A347637 (* m represents number of vertices in the complete graph. Each pebbling move removes k+1 pebbles from a vertex and adds k pebbles to an adjacent vertex. *) %t A347637 Do[(* Given m and a, list all possible assignments with a pebbles. *) %t A347637 alltuples[m_, a_] := IntegerPartitions[a + m, {m}] - 1; %t A347637 (* Given an assignment, list all resultant assignments after one pebbling move; only works for m>=3. *) %t A347637 pebblemoves[config_] := %t A347637 Block[{m, temp}, m = Length[config]; %t A347637 temp = Table[config, {i, m (m - 1)}] + %t A347637 Permutations[Join[{-(k + 1), k}, Table[0, {i, m - 2}]]]; %t A347637 temp = Select[temp, Min[#] >= 0 &]; %t A347637 temp = ReverseSort[DeleteDuplicates[ReverseSort /@ temp]]]; %t A347637 (* Given m and a, list all assignments that are P-games. *) %t A347637 Plist = {}; %t A347637 plist[m_, a_] := %t A347637 Block[{index, tuples}, %t A347637 While[Length[Plist] < m, index = Length[Plist]; %t A347637 AppendTo[Plist, {{Join[{1}, Table[0, {i, index}]]}}]]; %t A347637 Do[AppendTo[Plist[[m]], {}]; tuples = alltuples[m, i]; %t A347637 Do[If[ %t A347637 Not[IntersectingQ[pebblemoves[tuples[[j]]], %t A347637 If[i > 2, Plist[[m, i - 1]], {}]]], %t A347637 AppendTo[Plist[[m, i]], tuples[[j]]]], {j, Length[tuples]}], {i, %t A347637 Length[Plist[[m]]] + 1, a}]; Plist[[m, a]]]; %t A347637 (* Given m, print out the minimum a such that there are no P-games with a pebbles *) %t A347637 Do[a = 1; While[plist[m, a] != {}, a++]; %t A347637 Print["k=", k, " m=", m, " a=", a], {m, 5, 10}], {k, 1, 6}] %Y A347637 Cf. A340631, A346197, A346401. %K A347637 nonn,more,tabl %O A347637 5,1 %A A347637 _Kayla Barker_, _Mia DeStefano_, _Eugene Fiorini_, _Michael Gohn_, _Joe Miller_, _Jacob Roeder_, _Wing Hong Tony Wong_, Sep 09 2021