This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347652 #32 Oct 12 2021 17:07:32 %S A347652 1,4,10,16,22,34,52,70,106,160,214,322,484,700,790,1186,1780,2158, %T A347652 3238,4858,7288,9232,13120,17224,17494,26242,39364,41524,45682,68524, %U A347652 77092,97576,98962,148444,167002,250504,354292,504466,756700,851290,1276936,1417174,2125762 %N A347652 Records in the trajectory of all positive integers in the 3x+1 or Collatz problem, including the trajectory [1, 4, 2, 1] of 1. %C A347652 Replacing the second term (4) with the first two primes (2, 3) we have 1, 2, 3, 10, 16, 22, ... the records in A070165. %H A347652 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a> %e A347652 The first three rows of A235795 are [1, 4, 2, 1]; [2, 1]; [3, 10, 5, 16, 8, 4, 2, 1]. The records are [1, 4, 10, 16], the same as a(1)..a(4). %o A347652 (PARI) f(n) = if (n%2, 3*n+1, n/2); \\ A014682 %o A347652 row(n) = {my(list=List()); listput(list, n); until(n==1, n = f(n); listput(list, n)); Vec(list);} \\ A235795 %o A347652 lista(nn) = {my(m=0, list = List()); for (n=1, nn, my(v = row(n)); for (k=1, #v, if (v[k]>m, m=v[k]; listput(list, m););)); Vec(list);} \\ _Michel Marcus_, Sep 10 2021 %Y A347652 Records in A235795. %Y A347652 Cf. A006370, A070165, A235800, A347270 (all 3x+1 sequences). %K A347652 nonn %O A347652 1,2 %A A347652 _Omar E. Pol_, Sep 09 2021 %E A347652 More terms from _Michel Marcus_, Sep 10 2021