A347687 Triangle read by rows: T(n,k) (1<=k<=n) = (r(n+k)-r(k))/(2*n), where {r(i), i>=1} is the n-th row of array A347684.
0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 2, 2, 1, 0, 1, 0, 0, 0, 1, 0, 1, 3, 2, 2, 3, 1, 0, 1, 0, 3, 0, 3, 0, 1, 0, 1, 4, 0, 2, 2, 0, 4, 1, 0, 1, 0, 3, 0, 0, 0, 3, 0, 1, 0, 1, 5, 4, 3, 2, 2, 3, 4, 5, 1, 0, 1, 0, 0, 0, 5, 0, 5, 0, 0, 0, 1, 0, 1, 6, 4, 3, 5, 2, 2, 5, 3, 4, 6, 1, 0
Offset: 1
Examples
The initial rows are: 1, [0], 2, [1, 0], 3, [1, 1, 0], 4, [1, 0, 1, 0], 5, [1, 2, 2, 1, 0], 6, [1, 0, 0, 0, 1, 0], 7, [1, 3, 2, 2, 3, 1, 0], 8, [1, 0, 3, 0, 3, 0, 1, 0], 9, [1, 4, 0, 2, 2, 0, 4, 1, 0], 10, [1, 0, 3, 0, 0, 0, 3, 0, 1, 0], 11, [1, 5, 4, 3, 2, 2, 3, 4, 5, 1, 0], 12, [1, 0, 0, 0, 5, 0, 5, 0, 0, 0, 1, 0], ... Row 5 of A347684 starts 1, 9, 11, 9, 0, 11, 29, 31, 19, 0, 21, 49, 51, 29, 0, 31, ... Subtracting the first block of five terms from the second block of five terms we get [11, 29, 31, 19, 0] - [1, 9, 11, 9, 0] = [10, 20, 20, 10, 0], and after dividing by 10 we get [1, 2, 2, 1, 0], which is row 5 of the present triangle.
Links
- N. J. A. Sloane, Table of n, a(n) for n = 1..5050 [Rows 1 through 100, flattened]
- N. J. A. Sloane, Rows 1 through 40
Programs
-
Maple
myfun1 := proc(A,B) local Ar,Br; if igcd(A,B) > 1 then return(0); fi; Ar:=(A)^(-1) mod B; if 2*Ar > B then Ar:=B-Ar; fi; Br:=(B)^(-1) mod A; if 2*Br > A then Br:=A-Br; fi; A*Ar+B*Br; end; T87:=(n,k) -> (myfun1(n,n+k)-myfun1(n,k))/(2*n); for n from 1 to 20 do lprint([seq(T87(n,k),k=1..n)]); od:
Comments