This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347702 #26 Mar 05 2024 15:08:42 %S A347702 11,13,17,41,43,97,101,131,157,181,233,239,271,311,353,401,421,491, %T A347702 521,541,599,617,631,647,673,743,811,859,953,1021,1031,1051,1093,1171, %U A347702 1201,1249,1259,1301,1303,1327,1373,1531,1601,1621,1801,1871,2029,2111,2129,2161 %N A347702 Prime numbers that give a remainder of 1 when divided by the sum of their digits. %H A347702 Robert Israel, <a href="/A347702/b347702.txt">Table of n, a(n) for n = 1..10000</a> %e A347702 97 is a term since its sum of digits is 9+7 = 16, and 97 mod 16 = 1. %p A347702 select(t -> isprime(t) and t mod convert(convert(t,base,10),`+`) = 1, [seq(i,i=3..10000,2)]); # _Robert Israel_, Mar 05 2024 %t A347702 Select[Range[2000], PrimeQ[#] && Mod[#, Plus @@ IntegerDigits[#]] == 1 &] (* _Amiram Eldar_, Sep 10 2021 *) %o A347702 (Python) %o A347702 from sympy import primerange %o A347702 def ok(p): return p%sum(map(int, str(p))) == 1 %o A347702 print(list(filter(ok, primerange(1, 2130)))) # _Michael S. Branicky_, Sep 10 2021 %o A347702 (PARI) isok(p) = isprime(p) && ((p % sumdigits(p)) == 1); \\ _Michel Marcus_, Sep 10 2021 %Y A347702 Cf. A000040, A007605, A136251. %Y A347702 Subsequence of A209871. %Y A347702 A259866 \ {31}, and the primes associated with A056804 \ {1, 2} and A056797 are subsequences. %K A347702 nonn,base %O A347702 1,1 %A A347702 _Burak Muslu_, Sep 10 2021