This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347704 #8 Sep 27 2021 07:57:09 %S A347704 1,0,1,1,3,2,6,4,11,8,18,13,33,22,49,38,79,58,122,90,186,139,268,206, %T A347704 402,304,569,448,817,636,1152,907,1612,1283,2220,1791,3071,2468,4162, %U A347704 3409,5655,4634,7597,6283,10171,8478,13491,11336,17906,15088,23513,20012 %N A347704 Number of even-length integer partitions of n with integer alternating product. %C A347704 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %e A347704 The a(2) = 1 through a(9) = 8 partitions: %e A347704 (11) (21) (22) (41) (33) (61) (44) (63) %e A347704 (31) (2111) (42) (2221) (62) (81) %e A347704 (1111) (51) (4111) (71) (3321) %e A347704 (2211) (211111) (2222) (4221) %e A347704 (3111) (3221) (6111) %e A347704 (111111) (3311) (222111) %e A347704 (4211) (411111) %e A347704 (5111) (21111111) %e A347704 (221111) %e A347704 (311111) %e A347704 (11111111) %t A347704 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347704 Table[Length[Select[IntegerPartitions[n],EvenQ[Length[#]]&&IntegerQ[altprod[#]]&]],{n,0,30}] %Y A347704 Allowing any alternating product >= 1 gives A000041, reverse A344607. %Y A347704 Allowing any alternating product gives A027187, odd bisection A236914. %Y A347704 The Heinz numbers of these partitions are given by A028260 /\ A347457. %Y A347704 The reverse and reciprocal versions are both A035363. %Y A347704 The multiplicative version (factorizations) is A347438, reverse A347439. %Y A347704 The odd-length instead of even-length version is A347444. %Y A347704 Allowing any length gives A347446. %Y A347704 A034008 counts even-length compositions, ranked by A053754. %Y A347704 A103919 counts partitions by sum and alternating sum (reverse: A344612). %Y A347704 A119620 counts partitions with alternating product 1. %Y A347704 A325534 counts separable partitions, ranked by A335433. %Y A347704 A325535 counts inseparable partitions, ranked by A335448. %Y A347704 Cf. A000070, A067661, A236913, A304620, A339846, A347437, A347441, A347442, A347445, A347448, A347449, A347454, A347462. %K A347704 nonn %O A347704 0,5 %A A347704 _Gus Wiseman_, Sep 17 2021