A347705 Number of factorizations of n with reverse-alternating product > 1.
0, 1, 1, 1, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 2, 3, 1, 4, 1, 4, 2, 2, 1, 7, 1, 2, 3, 4, 1, 5, 1, 7, 2, 2, 2, 7, 1, 2, 2, 7, 1, 5, 1, 4, 4, 2, 1, 12, 1, 4, 2, 4, 1, 7, 2, 7, 2, 2, 1, 11, 1, 2, 4, 8, 2, 5, 1, 4, 2, 5, 1, 16, 1, 2, 4, 4, 2, 5, 1, 12, 3, 2, 1, 11, 2
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 2, 6, 8, 12, 24, 30, 48, 60: 2 6 8 12 24 30 48 60 2*3 2*4 2*6 3*8 5*6 6*8 2*30 2*2*2 3*4 4*6 2*15 2*24 3*20 2*2*3 2*12 3*10 3*16 4*15 2*2*6 2*3*5 4*12 5*12 2*3*4 2*3*8 6*10 2*2*2*3 2*4*6 2*5*6 3*4*4 3*4*5 2*2*12 2*2*15 2*2*2*6 2*3*10 2*2*3*4 2*2*3*5 2*2*2*2*3
Crossrefs
Programs
-
Mathematica
facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; revaltprod[q_]:=Product[q[[-i]]^(-1)^(i-1),{i,Length[q]}]; Table[Length[Select[facs[n],revaltprod[#]>1&]],{n,100}]
Comments