A347706 Number of factorizations of n that are not a twin (x*x) nor have an alternating permutation.
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a(n) factorizations for n = 96, 192, 2160, 576: 2*2*2*12 3*4*4*4 3*3*3*80 4*4*4*9 2*2*2*2*6 2*2*2*24 6*6*6*10 2*2*2*72 2*2*2*2*2*3 2*2*2*2*12 2*2*2*270 2*2*2*2*36 2*2*2*2*2*6 2*3*3*3*40 2*2*2*2*4*9 2*2*2*2*3*4 2*2*2*2*135 2*2*2*2*6*6 2*2*2*2*2*2*3 2*2*2*2*3*45 2*2*2*2*2*18 2*2*2*2*5*27 2*2*2*2*3*12 2*2*2*2*9*15 2*2*2*2*2*2*9 2*2*2*2*2*3*6 2*2*2*2*2*2*3*3
Links
- Wikipedia, Alternating permutation
Crossrefs
Positions of nonzero terms are A046099.
The version for compositions is A348377.
The version allowing twins is A348380.
The inseparable case is A348381.
A001250 counts alternating permutations of sets.
A339846 counts even-length factorizations.
A339890 counts odd-length factorizations.
A348610 counts alternating ordered factorizations.
Programs
Formula
a(2^n) = A344654(n).
Comments