This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347708 #14 Jan 29 2025 17:30:25 %S A347708 0,1,1,1,1,1,1,2,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,3,1,1,2,2,1,2,1,3,1,1, %T A347708 1,3,1,1,1,3,1,2,1,2,2,1,1,4,1,2,1,2,1,2,1,3,1,1,1,5,1,1,2,3,1,2,1,2, %U A347708 1,2,1,5,1,1,2,2,1,2,1,4,2,1,1,5,1,1,1,3,1,3,1,2,1,1,1,5,1,2,2,3,1,2,1,3,2 %N A347708 Number of distinct possible alternating products of odd-length factorizations of n. %C A347708 We define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)). %C A347708 A factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %C A347708 Note that it is sufficient to look at only length-1 and length-3 factorizations; cf. A347709. %H A347708 Antti Karttunen, <a href="/A347708/b347708.txt">Table of n, a(n) for n = 1..65537</a> %F A347708 Conjecture: For n > 1, a(n) = 1 + A347460(n) - A038548(n) + A072670(n). %e A347708 Representative factorizations for each of the a(180) = 7 alternating products: %e A347708 (2*2*3*3*5) -> 5 %e A347708 (2*2*45) -> 45 %e A347708 (2*3*30) -> 20 %e A347708 (2*5*18) -> 36/5 %e A347708 (2*9*10) -> 20/9 %e A347708 (3*4*15) -> 45/4 %e A347708 (180) -> 180 %t A347708 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347708 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347708 Table[Length[Union[altprod/@Select[facs[n],OddQ[Length[#]]&]]],{n,100}] %o A347708 (PARI) %o A347708 altprod(facs) = prod(i=1,#facs,facs[i]^((-1)^(i-1))); %o A347708 A347708aux(n, m=n, facs=List([])) = if(1==n, if((#facs)%2, altprod(facs), 0), my(newfacs, r, rats=List([])); fordiv(n, d, if((d>1)&&(d<=m), newfacs = List(facs); listput(newfacs,d); r = A347708aux(n/d, d, newfacs); if(r, rats = concat(rats,r)))); (rats)); %o A347708 A347708(n) = if(1==n,0,#Set(A347708aux(n))); \\ _Antti Karttunen_, Jan 29 2025 %Y A347708 The version for partitions is A028310, reverse A347707. %Y A347708 Positions of 1's appear to be A037143 \ {1}. %Y A347708 The even-length version for n > 1 is A072670, strict A211159. %Y A347708 Counting only integers appears to give A293234, with evens A046951. %Y A347708 This is the odd-length case of A347460, reverse A038548. %Y A347708 The any-length version for partitions is A347461, reverse A347462. %Y A347708 The length-3 case is A347709. %Y A347708 A001055 counts factorizations (strict A045778, ordered A074206). %Y A347708 A056239 adds up prime indices, row sums of A112798. %Y A347708 A276024 counts distinct positive subset-sums of partitions. %Y A347708 A292886 counts knapsack factorizations, by sum A293627. %Y A347708 A301957 counts distinct subset-products of prime indices. %Y A347708 A304792 counts distinct subset-sums of partitions. %Y A347708 A347050 = factorizations w/ an alternating permutation, complement A347706. %Y A347708 A347441 counts odd-length factorizations with integer alternating product. %Y A347708 Cf. A002033, A103919, A108917, A119620, A325770, A339846, A339890, A347437, A347438, A347439, A347440, A347442, A347456. %K A347708 nonn %O A347708 1,8 %A A347708 _Gus Wiseman_, Oct 11 2021 %E A347708 Data section extended to a(105) by _Antti Karttunen_, Jan 29 2025