This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347709 #13 Jan 29 2025 11:37:24 %S A347709 0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,1,0,1,0,1,0,0,0,2,0,0,1,1,0,1,0,2,0,0, %T A347709 0,2,0,0,0,2,0,1,0,1,1,0,0,3,0,1,0,1,0,1,0,2,0,0,0,4,0,0,1,2,0,1,0,1, %U A347709 0,1,0,4,0,0,1,1,0,1,0,3,1,0,0,4,0,0,0,2,0,2,0,1,0,0,0,4,0,1,1,2,0,1,0,2,1,0,0,4,0,1,0,3,0,1,0,1,1,0,0,5 %N A347709 Number of distinct rational numbers of the form x * z / y for some factorization x * y * z = n, 1 < x <= y <= z. %C A347709 This is also the number of distinct possible alternating products of length-3 factorizations of n, where we define the alternating product of a sequence (y_1,...,y_k) to be Product_i y_i^((-1)^(i-1)), and where a factorization of n is a weakly increasing sequence of positive integers > 1 with product n. %H A347709 Antti Karttunen, <a href="/A347709/b347709.txt">Table of n, a(n) for n = 1..65537</a> %e A347709 Representative factorizations for each of the a(360) = 9 alternating products: %e A347709 (2,2,90) -> 90 %e A347709 (2,3,60) -> 40 %e A347709 (2,4,45) -> 45/2 %e A347709 (2,5,36) -> 72/5 %e A347709 (2,6,30) -> 10 %e A347709 (2,9,20) -> 40/9 %e A347709 (2,10,18) -> 18/5 %e A347709 (2,12,15) -> 5/2 %e A347709 (3,8,15) -> 45/8 %t A347709 facs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[facs[n/d],Min@@#>=d&]],{d,Rest[Divisors[n]]}]]; %t A347709 altprod[q_]:=Product[q[[i]]^(-1)^(i-1),{i,Length[q]}]; %t A347709 Table[Length[Union[altprod/@Select[facs[n],Length[#]==3&]]],{n,100}] %o A347709 (PARI) A347709(n) = { my(rats=List([])); fordiv(n,z,my(yx=n/z); fordiv(yx, y, my(x = yx/y); if((y <= z) && (x <= y) && (x > 1), listput(rats,x*z/y)))); #Set(rats); }; \\ _Antti Karttunen_, Jan 29 2025 %Y A347709 Allowing factorizations of any length <= 3 gives A033273. %Y A347709 Positions of positive terms are A033942. %Y A347709 Positions of 0's are A037143. %Y A347709 The length-2 version is A072670. %Y A347709 Allowing any length gives A347460, reverse A038548. %Y A347709 Allowing any odd length gives A347708. %Y A347709 A001055 counts factorizations (strict A045778, ordered A074206). %Y A347709 A122179 counts length-3 factorizations. %Y A347709 A292886 counts knapsack factorizations, by sum A293627. %Y A347709 A301957 counts distinct subset-products of prime indices. %Y A347709 A304792 counts distinct subset-sums of partitions, positive A276024. %Y A347709 Cf. A000040, A001358, A002033, A046951, A339846, A339890, A347437, A347438, A347439, A347440, A347442, A347456, A347461. %K A347709 nonn %O A347709 1,24 %A A347709 _Gus Wiseman_, Oct 14 2021 %E A347709 More terms from _Antti Karttunen_, Jan 29 2025