This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347718 #52 Apr 06 2022 08:34:38 %S A347718 1,6,56,448,6264,96348,1559520,16908804,391945400,20553536052, %T A347718 706019328000,20210523379200,519285252355776,21710734431216480, %U A347718 1456143373228677120,25536237889612326912,1792353900753729655758,52839150354952425838080,4154723599066412190910560 %N A347718 a(n) = Sum of the divisors of sigma_n(n). %H A347718 Daniel Suteu, <a href="/A347718/b347718.txt">Table of n, a(n) for n = 1..120</a> (first 42 terms from Chai Wah Wu) %H A347718 <a href="/index/Si#SIGMAN">Index entries for sequences related to sigma(n)</a> %F A347718 a(n) = sigma(sigma_n(n)). %F A347718 a(n) = A000203(A023887(n)). - _Michel Marcus_, Jan 29 2022 %e A347718 a(3) = sigma(sigma_3(3)) = sigma(1^3+3^3) = sigma(28) = 1+2+4+7+14+28 = 56. %p A347718 a:= n-> (s-> s(s[n](n)))(numtheory[sigma]): %p A347718 seq(a(n), n=1..20); # _Alois P. Heinz_, Jan 28 2022 %t A347718 Table[DivisorSigma[1, DivisorSigma[n, n]], {n, 20}] %o A347718 (Python) %o A347718 from math import prod %o A347718 from collections import Counter %o A347718 from sympy import factorint %o A347718 def A347718(n): return prod((q**(r+1)-1)//(q-1) for q,r in sum((Counter(factorint((p**(n*(e+1))-1)//(p**n-1))) for p, e in factorint(n).items()),Counter()).items()) # _Chai Wah Wu_, Jan 28 2022 %Y A347718 Cf. A000203, A023887, A064165. %K A347718 nonn %O A347718 1,2 %A A347718 _Wesley Ivan Hurt_, Jan 28 2022