cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347735 Square array T(n, k), n, k > 0, read by antidiagonals; let b be the function that associates to any pair of integers (u, v) the Bézout coefficients (x, y) as produced by the extended Euclidean algorithm (u*x + v*y = gcd(u, v)); T(n, k) is the number of iterations of b when starting from (n, k) needed to obtain a unit vector.

This page as a plain text file.
%I A347735 #7 Sep 15 2021 09:50:12
%S A347735 1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,2,2,2,2,1,1,1,2,1,2,1,1,1,2,1,2,2,1,
%T A347735 2,1,1,1,2,2,1,2,2,1,1,1,2,2,2,2,2,2,2,2,1,1,1,1,1,3,1,3,1,1,1,1,1,2,
%U A347735 2,2,3,2,2,3,2,2,2,1,1,1,2,2,2,2,1,2,2,2,2,1,1
%N A347735 Square array T(n, k), n, k > 0, read by antidiagonals; let b be the function that associates to any pair of integers (u, v) the Bézout coefficients (x, y) as produced by the extended Euclidean algorithm (u*x + v*y = gcd(u, v)); T(n, k) is the number of iterations of b when starting from (n, k) needed to obtain a unit vector.
%C A347735 For n, k > 0, b(n, k) = (A345415(n, k), A345416(n, k)).
%H A347735 Rémy Sigrist, <a href="/A347735/a347735.png">Colored representation of the array for n, k <= 1000</a>
%H A347735 Wikipedia, <a href="https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity">Bézout's identity</a>
%F A347735 T(n, k) = T(k, n).
%F A347735 T(n, n) = 1.
%F A347735 T(m*n, m*k) = T(n, k) for any m > 0.
%e A347735 Array T(n, k) begins:
%e A347735   n\k|  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15
%e A347735   ---+---------------------------------------------------
%e A347735     1|  1  1  1  1  1  1  1  1  1   1   1   1   1   1   1
%e A347735     2|  1  1  2  1  2  1  2  1  2   1   2   1   2   1   2
%e A347735     3|  1  2  1  2  2  1  2  2  1   2   2   1   2   2   1
%e A347735     4|  1  1  2  1  2  2  2  1  2   2   2   1   2   2   2
%e A347735     5|  1  2  2  2  1  2  3  3  2   1   2   3   3   2   1
%e A347735     6|  1  1  1  2  2  1  2  2  2   2   2   1   2   2   2
%e A347735     7|  1  2  2  2  3  2  1  2  3   3   3   3   2   1   2
%e A347735     8|  1  1  2  1  3  2  2  1  2   2   3   2   3   2   2
%e A347735     9|  1  2  1  2  2  2  3  2  1   2   3   2   3   3   2
%e A347735    10|  1  1  2  2  1  2  3  2  2   1   2   2   3   3   2
%o A347735 (PARI) T(n,k) = { for (v=0, oo, if (n^2+k^2<=1, return (v), [n,k]=gcdext(n,k)[1..2])) }
%Y A347735 Cf. A003989, A345415, A345416.
%K A347735 nonn,tabl
%O A347735 1,8
%A A347735 _Rémy Sigrist_, Sep 11 2021