This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347735 #7 Sep 15 2021 09:50:12 %S A347735 1,1,1,1,1,1,1,2,2,1,1,1,1,1,1,1,2,2,2,2,1,1,1,2,1,2,1,1,1,2,1,2,2,1, %T A347735 2,1,1,1,2,2,1,2,2,1,1,1,2,2,2,2,2,2,2,2,1,1,1,1,1,3,1,3,1,1,1,1,1,2, %U A347735 2,2,3,2,2,3,2,2,2,1,1,1,2,2,2,2,1,2,2,2,2,1,1 %N A347735 Square array T(n, k), n, k > 0, read by antidiagonals; let b be the function that associates to any pair of integers (u, v) the Bézout coefficients (x, y) as produced by the extended Euclidean algorithm (u*x + v*y = gcd(u, v)); T(n, k) is the number of iterations of b when starting from (n, k) needed to obtain a unit vector. %C A347735 For n, k > 0, b(n, k) = (A345415(n, k), A345416(n, k)). %H A347735 Rémy Sigrist, <a href="/A347735/a347735.png">Colored representation of the array for n, k <= 1000</a> %H A347735 Wikipedia, <a href="https://en.wikipedia.org/wiki/B%C3%A9zout%27s_identity">Bézout's identity</a> %F A347735 T(n, k) = T(k, n). %F A347735 T(n, n) = 1. %F A347735 T(m*n, m*k) = T(n, k) for any m > 0. %e A347735 Array T(n, k) begins: %e A347735 n\k| 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 %e A347735 ---+--------------------------------------------------- %e A347735 1| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 %e A347735 2| 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 %e A347735 3| 1 2 1 2 2 1 2 2 1 2 2 1 2 2 1 %e A347735 4| 1 1 2 1 2 2 2 1 2 2 2 1 2 2 2 %e A347735 5| 1 2 2 2 1 2 3 3 2 1 2 3 3 2 1 %e A347735 6| 1 1 1 2 2 1 2 2 2 2 2 1 2 2 2 %e A347735 7| 1 2 2 2 3 2 1 2 3 3 3 3 2 1 2 %e A347735 8| 1 1 2 1 3 2 2 1 2 2 3 2 3 2 2 %e A347735 9| 1 2 1 2 2 2 3 2 1 2 3 2 3 3 2 %e A347735 10| 1 1 2 2 1 2 3 2 2 1 2 2 3 3 2 %o A347735 (PARI) T(n,k) = { for (v=0, oo, if (n^2+k^2<=1, return (v), [n,k]=gcdext(n,k)[1..2])) } %Y A347735 Cf. A003989, A345415, A345416. %K A347735 nonn,tabl %O A347735 1,8 %A A347735 _Rémy Sigrist_, Sep 11 2021