This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347746 #13 Oct 15 2021 18:54:34 %S A347746 96,216,256,336,416,456,576,696,736,756,816,896,936,1056,1176,1216, %T A347746 1296,1376,1416,1456,1536,1596,1656,1696,1776,1836,1856,1896,1976, %U A347746 2016,2136,2176,2256,2336,2376,2436,2496,2576,2616,2656,2736,2816,2856,2916,2976,3016 %N A347746 Positive integers that are equal both to the product of two integers ending with 4 and to that of two integers ending with 6. %C A347746 Intersection of A324297 and A347253. %F A347746 Lim_{n->infinity} a(n)/a(n-1) = 1. %e A347746 96 = 4*24 = 6*16, 216 = 4*54 = 6*36, 256 = 4*64 = 16*16, 336 = 4*84 = 6*56, ... %t A347746 max=3050;Select[Intersection[Union@Flatten@Table[a*b, {a, 4, Floor[max/4], 10}, {b, a, Floor[max/a], 10}],Union@Flatten@Table[a*b, {a, 6, Floor[max/6], 10}, {b, a, Floor[max/a], 10}]], 0<#<max&] %o A347746 (Python) %o A347746 def aupto(lim): return sorted(set(a*b for a in range(4, lim//4+1, 10) for b in range(a, lim//a+1, 10)) & set(a*b for a in range(6, lim//6+1, 10) for b in range(a, lim//a+1, 10))) %o A347746 print(aupto(3017)) # _Michael S. Branicky_, Sep 12 2021 %Y A347746 Cf. A017341 (supersequence), A324297, A347253, A347748. %K A347746 nonn,base %O A347746 1,1 %A A347746 _Stefano Spezia_, Sep 12 2021