cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347748 Number of positive integers with n digits that are equal both to the product of two integers ending with 4 and to that of two integers ending with 6.

This page as a plain text file.
%I A347748 #12 Jan 06 2024 20:08:27
%S A347748 0,1,12,159,1859,20704,223525,2370684,24842265,258128126,2665475963
%N A347748 Number of positive integers with n digits that are equal both to the product of two integers ending with 4 and to that of two integers ending with 6.
%C A347748 a(n) is the number of n-digit numbers in A347746.
%F A347748 a(n) < A052268(n).
%F A347748 a(n) = A337856(n) + A347255(n) - A347749(n).
%F A347748 Conjecture: lim_{n->infinity} a(n)/a(n-1) = 10.
%t A347748 Table[{lo, hi}={10^(n-1), 10^n}; Length@Select[Intersection[Union@Flatten@Table[a*b, {a, 4, Floor[hi/4], 10}, {b, a, Floor[hi/a], 10}],Union@Flatten@Table[a*b, {a, 6, Floor[hi/6], 10}, {b, a, Floor[hi/a], 10}]], lo<#<hi&], {n,8}]
%o A347748 (Python)
%o A347748 def a(n):
%o A347748   lo, hi = 10**(n-1), 10**n
%o A347748   return len(set(a*b for a in range(4, hi//4+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi) & set(a*b for a in range(6, hi//6+1, 10) for b in range(a, hi//a+1, 10) if lo <= a*b < hi))
%o A347748 print([a(n) for n in range(1, 9)]) # _Michael S. Branicky_, Oct 06 2021
%Y A347748 Cf. A017341, A052268, A324297, A337856, A347253, A347255, A347746, A347749.
%K A347748 nonn,base,hard,more
%O A347748 1,3
%A A347748 _Stefano Spezia_, Sep 12 2021
%E A347748 a(9)-a(10) from _Michael S. Branicky_, Oct 06 2021
%E A347748 a(11) from _Frank A. Stevenson_, Jan 06 2024