cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A344993 Number of polygons formed when every pair of vertices of a row of n adjacent congruent rectangles are joined by an infinite line.

Original entry on oeis.org

0, 4, 20, 68, 168, 368, 676, 1184, 1912, 2944, 4292, 6152, 8456, 11484, 15164, 19624, 24944, 31508, 39076, 48212, 58656, 70672, 84284, 100192, 117888, 138100, 160580, 185796, 213568, 245008, 279116, 317424, 359280, 405124, 454868, 509264, 567640, 631988, 701228, 776032, 855968, 943260, 1035844
Offset: 0

Views

Author

Keywords

Comments

The number of polygons formed inside the rectangles is A306302(n), while the number of polygons formed outside the rectangles is 2*A332612(n+1).
The number of open regions, those outside the polygons with unbounded area and two edges that go to infinity, for n >= 1 is given by 2*n^2 + 4*n + 6 = A255843(n+1).
Like A306302(n) is appears only 3-gons and 4-gons are generated by the infinite lines.

Examples

			a(1) = 4 as connecting the four vertices of a single rectangle forms four triangles inside the rectangle. Twelve open regions outside these triangles are also formed.
a(2) = 20 as connecting the six vertices of two adjacent rectangles forms two quadrilaterals and fourteen triangles inside the rectangles while also forming four triangles outside the rectangles, giving twenty polygons in total. Twenty-two open regions outside these polygons are also formed.
See the linked images for further examples.
		

Crossrefs

See A347750 and A347751 for the numbers of vertices and edges in the finite part of the corresponding graph.
Cf. A332612 (half the number of polygons outside the rectangles), A306302 (number of polygons inside the rectangles), A255843.

Programs

  • Python
    from sympy import totient
    def A344993(n): return 2*n*(n+1) + 2*sum(totient(i)*(n+1-i)*(2*n+2-i) for i in range(2,n+1)) # Chai Wah Wu, Aug 21 2021

Formula

a(n) = 2*A332612(n+1) + A306302(n) = 2*Sum_{i=2..n, j=1..i-1, gcd(i,j)=1} (n+1-i)*(n+1-j) + Sum_{i=1..n, j=1..n, gcd(i,j)=1} (n+1-i)*(n+1-j) + n^2 + 2*n.
a(n) = 2*n*(n+1) + 2*Sum_{i=2..n} (n+1-i)*(2*n+2-i)*phi(i). - Chai Wah Wu, Aug 21 2021

A347750 Number of intersection points when every pair of vertices of a row of n adjacent congruent rectangles are joined by an infinite line.

Original entry on oeis.org

0, 5, 17, 57, 133, 297, 525, 925, 1477, 2289, 3277, 4701, 6437, 8805, 11541, 14917, 18869, 23893, 29509, 36473, 44349, 53545, 63605, 75629, 88901, 104325, 120981, 139913, 160581, 184409, 209885, 238989, 270525, 305413, 342413, 383301, 426949, 475757, 527205, 583261, 642821, 708717, 777829
Offset: 0

Views

Author

Keywords

Examples

			a(1) = 5 as connecting the four vertices of a single rectangle forms one new vertex inside the rectangle, giving a total of 4 + 1 = 5 total intersection points.
a(2) = 17 as connecting the six vertices of two adjacent rectangles forms seven vertices inside the rectangles while also forming four vertices outside the rectangles. The total number of intersection points is then 6 + 7 + 4 = 17.
See the linked images for further examples.
		

Crossrefs

Cf. A344993 (number of polygons), A347751 (number of edges), A159065, A331755, A092275 (number of intersections resp. inside the rectangles, on or inside them, above them).

Formula

a(n) = A347751(n) - A344993(n) + 1.
It seems that a(n) = 2 * A159065(n+1) + 3 for n>0. - Andrei Zabolotskii, Jul 03 2025

A386561 Place a point on the integer coordinates, up to |n|, along all four axial directions on a Cartesian plane, and then join an infinite straight line between every pair of points: a(n) is the number of finite edges created in the resulting graph.

Original entry on oeis.org

8, 136, 804, 2608, 6568, 13396, 26556, 45120, 73060, 110984, 171144, 238900, 344212, 462788, 607384, 786476, 1037772, 1293904, 1654432, 2013768, 2447312, 2965392
Offset: 1

Views

Author

Scott R. Shannon, Jul 26 2025

Keywords

Comments

See A386559 and A386560 for images of the graphs.

Crossrefs

Cf. A386559 (vertices), A386560 (regions), A386562 (k-gons), A347751, A344899, A344896, A345650.

Formula

a(n) = A386559(n) + A386560(n) - 1 by Euler's formula.
Showing 1-3 of 3 results.