A347766 Irregular table read by rows, T(n, k) is the rank of the k-th positive Euler permutation of {1,...,n}, permutations sorted in lexicographical order. If no such permutation exists, then T(n, 0) = 0 by convention.
1, 0, 0, 2, 3, 1, 6, 8, 11, 14, 15, 17, 3, 8, 24, 28, 29, 30, 32, 35, 50, 55, 57, 68, 71, 74, 79, 92, 2, 6, 15, 16, 21, 26, 30, 40, 44, 54, 55, 60, 68, 99, 104, 120, 121, 123, 124, 125, 137, 138, 142, 143, 144, 146, 150, 161, 164, 167, 174, 175, 177, 179, 185
Offset: 0
Examples
Table of positive Euler permutations, length of rows is A347601: [0] 1; [1] 0; [2] 0; [3] 2, 3; [4] 1, 6, 8, 11, 14, 15, 17; [5] 3, 8, 24, 28, 29, 30, 32, 35, 50, 55, 57, 68, 71, 74, 79, 92. . The 16 permutations corresponding to the ranks are for n = 5: 3 -> [12435], 8 -> [13254], 24 -> [15432], 28 -> [21453], 29 -> [21534], 30 -> [21543], 32 -> [23154], 35 -> [23514], 50 -> [31254], 55 -> [32145], 57 -> [32415], 68 -> [35142], 71 -> [35412], 74 -> [41253], 79 -> [42135], 92 -> [45132].
Programs
-
Maple
# Uses function TangentMatrix from A346831. EulerPermutationsRank := proc(n, sgn) local M, P, N, s, p, m, rank; M := TangentMatrix(n); P := []; N := []; rank := 0; for p in Iterator:-Permute(n) do rank := rank + 1; m := mul(M[k, p(k)], k = 1..n); if m = 0 then next fi; if m = 1 then P := [op(P), rank] fi; if m = -1 then N := [op(N), rank] fi; od; if sgn = 'pos' then P else N fi end: A347766Row := n -> `if`(n < 3, [[1,0,0][n+1]], EulerPermutationsRank(n, 'pos')): for n from 0 to 5 do A347766Row(n) od;
Comments