cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347772 Square array read by antidiagonals downwards: T(n,k) is the smallest prime p not dividing n such that (p-1) / ord_p(n) = k (n>=2, k>=1), or 0 if no such p exists.

Original entry on oeis.org

3, 7, 2, 43, 11, 0, 113, 67, 3, 2, 251, 13, 0, 11, 11, 31, 41, 17, 13, 19, 2, 1163, 61, 0, 101, 7, 3, 3, 73, 883, 31, 0, 5, 73, 17, 2, 397, 313, 0, 199, 31, 29, 13, 5, 7, 151, 271, 73, 827, 139, 1031, 113, 0, 3, 2, 331, 431, 0, 569, 463, 19, 251, 13, 103, 7, 5, 1753, 5743, 151, 487, 97, 43
Offset: 2

Views

Author

Eric Chen, Sep 14 2021

Keywords

Examples

			Table begins:
  n\k |  1   2    3    4     5    6     7    8    9    10    11    12
  ----+--------------------------------------------------------------
   2  |  3   7   43  113   251   31  1163   73  397   151   331  1753
   3  |  2  11   67   13    41   61   883  313  271   431  5743   193
   4  |  0   3    0   17     0   31     0   73    0   151     0   433
   5  |  2  11   13  101     0  199   827  569  487    31  1453   181
   6  | 11  19    7    5    31  139   463   97   37   101   353   241
   7  |  2   3   73   29  1031   19    43  113  883   311   353  1453
   8  |  3  17   13  113   251    7  1163   89  109   431  1013   577
   9  |  2   5    0   13     0   67     0  313    0    41     0    61
  10  |  7   3  103   53    11   79   211   41   73   281   353    37
  11  |  2   7  193    5   191   19   379  449  199  1301  2531  1549
  12  |  5  23   19   37   271   13    29  193  487    11    89   373
  ...
		

Crossrefs

Row 2: A101208.
Row 3: A101209.
Row 10: A054471.
Column 1: A056619.

Programs

  • PARI
    a(m, n)=forprime(p=2, 2^40, if(gcd(m, p)==1 && znorder(Mod(m, p))==(p-1)/n, return(p)))
    is(m, n)=p=core(m); if(p>1 && p%4==1 && n%p==0 && n%2, return(1)); 0
    A347772(m, n)=if(is(m, n) || (issquare(m) && n%2 && (m%2==0 || n>1)), 0, a(m, n))

Formula

T(n,k) = 0 if n is square, k is odd, n > 1.
T(n,k) = 0 if n is even square, k is odd.
T(n,k) = 0 if (let n' be the squarefree part (A007913) of n) n' == 1 (mod 4), n' > 1, k is divisible by n', k is odd.
T(27,k) = 0 for k == 4 or 8 (mod 12).
T(n,k) == 1 mod k if nonzero.