This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347807 #10 Sep 14 2021 20:48:51 %S A347807 1,1,1,5,6,7,14,19,29,41,56,88,123,170,245,351,500,704,1003,1427,2021, %T A347807 2867,4060,5763,8176,11585,16430,23301,33032,46826,66393,94131,133458, %U A347807 189209,268243,380315,539190,764422,1083758,1536495,2178361,3088357,4378496,6207581 %N A347807 Expansion of (theta_3(x) - 1)^4 / (8 * (3 - theta_3(x))). %C A347807 Number of compositions (ordered partitions) of n into 4 or more squares. %H A347807 <a href="/index/Su#ssq">Index entries for sequences related to sums of squares</a> %F A347807 a(n) = Sum_{k=4..n} A337165(n,k). - _Alois P. Heinz_, Sep 14 2021 %p A347807 b:= proc(n, t) option remember; `if`(n=0, `if`(t=0, 1, 0), add(( %p A347807 s->`if`(s>n, 0, b(n-s, max(0, t-1))))(j^2), j=1..isqrt(n))) %p A347807 end: %p A347807 a:= n-> b(n, 4): %p A347807 seq(a(n), n=4..47); # _Alois P. Heinz_, Sep 14 2021 %t A347807 nmax = 47; CoefficientList[Series[(EllipticTheta[3, 0, x] - 1)^4/(8 (3 - EllipticTheta[3, 0, x])), {x, 0, nmax}], x] // Drop[#, 4] & %Y A347807 Cf. A000290, A006456, A337165, A347805, A347806, A347808, A347809. %K A347807 nonn %O A347807 4,4 %A A347807 _Ilya Gutkovskiy_, Sep 14 2021