This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347810 #19 Nov 04 2021 05:58:14 %S A347810 1,1,25,2062017739,255053951339165796439851848897794625 %N A347810 Number of n-dimensional lattice walks from {n}^n to {0}^n using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1. %C A347810 Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding. %H A347810 Alois P. Heinz, <a href="/A347810/b347810.txt">Table of n, a(n) for n = 0..6</a> %H A347810 Alois P. Heinz, <a href="/A347811/a347811.gif">Animation of a(2) = 25 walks</a> %H A347810 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %H A347810 Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a> %p A347810 s:= proc(n) option remember; %p A347810 `if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1))) %p A347810 end: %p A347810 b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`( %p A347810 add(i^2, i=h)<add(i^2, i=l), b(sort(h)), 0))(l+x), x=s(n))))(nops(l)) %p A347810 end: %p A347810 a:= n-> b([n$n]): %p A347810 seq(a(n), n=0..5); %t A347810 s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]]; %t A347810 b[l_List] := b[l] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l+x}, If[h.h < l.l, b[Sort[h]], 0]], {x, s[n]}]]]; %t A347810 a[n_] := b[Table[n, {n}]]; %t A347810 Table[a[n], {n, 0, 5}] (* _Jean-François Alcover_, Nov 04 2021, after _Alois P. Heinz_ *) %Y A347810 Main diagonal of A347811. %Y A347810 Cf. A034841. %K A347810 nonn,walk %O A347810 0,3 %A A347810 _Alois P. Heinz_, Sep 14 2021