cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347813 Number of cubic lattice walks from (n,n,n) to (0,0,0) using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1.

This page as a plain text file.
%I A347813 #19 Nov 04 2021 05:58:09
%S A347813 1,19,211075,2062017739,32191353922714,977270269148852086,
%T A347813 29618256217540107753856,1041952262234097478667071246,
%U A347813 43960391382107369608617444946360,2007170356703297211447385988052335644,99624394337129260265907069889802324849302
%N A347813 Number of cubic lattice walks from (n,n,n) to (0,0,0) using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1.
%C A347813 Lattice points may have negative coordinates, and different walks may differ in length.  All walks are self-avoiding.
%H A347813 Alois P. Heinz, <a href="/A347813/b347813.txt">Table of n, a(n) for n = 0..201</a>
%H A347813 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a>
%H A347813 Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a>
%e A347813 a(1) = 19:
%e A347813   ((1,1,1), (0,0,0)),
%e A347813   ((1,1,1), (0,0,1), (0,0,0)),
%e A347813   ((1,1,1), (0,1,0), (0,0,0)),
%e A347813   ((1,1,1), (0,1,1), (0,0,0)),
%e A347813   ((1,1,1), (1,0,0), (0,0,0)),
%e A347813   ((1,1,1), (1,0,1), (0,0,0)),
%e A347813   ((1,1,1), (1,1,0), (0,0,0)),
%e A347813   ((1,1,1), (0,1,1), (-1,0,0), (0,0,0)),
%e A347813   ((1,1,1), (0,1,1), (0,0,1), (0,0,0)),
%e A347813   ((1,1,1), (0,1,1), (0,1,0), (0,0,0)),
%e A347813   ((1,1,1), (0,1,1), (1,0,0), (0,0,0)),
%e A347813   ((1,1,1), (1,0,1), (0,-1,0), (0,0,0)),
%e A347813   ((1,1,1), (1,0,1), (0,0,1), (0,0,0)),
%e A347813   ((1,1,1), (1,0,1), (0,1,0), (0,0,0)),
%e A347813   ((1,1,1), (1,0,1), (1,0,0), (0,0,0)),
%e A347813   ((1,1,1), (1,1,0), (0,0,-1), (0,0,0)),
%e A347813   ((1,1,1), (1,1,0), (0,0,1), (0,0,0)),
%e A347813   ((1,1,1), (1,1,0), (0,1,0), (0,0,0)),
%e A347813   ((1,1,1), (1,1,0), (1,0,0), (0,0,0)).
%p A347813 s:= proc(n) option remember;
%p A347813      `if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1)))
%p A347813     end:
%p A347813 b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`(
%p A347813       add(i^2, i=h)<add(i^2, i=l), b(sort(h)), 0))(l+x), x=s(n))))(nops(l))
%p A347813     end:
%p A347813 a:= n-> b([n$3]):
%p A347813 seq(a(n), n=0..12);
%t A347813 s[n_] := s[n] = If[n == 0, {{}}, Sequence @@ Table[Append[#, i], {i, -1, 1}]& /@ s[n-1]];
%t A347813 b[l_List] := b[l] = With[{n = Length[l]}, If[l == Table[0, {n}], 1, Sum[With[{h = l+x}, If[h.h < l.l, b[Sort[h]], 0]], {x, s[n]}]]];
%t A347813 a[n_] := b[{n, n, n}];
%t A347813 Table[a[n], {n, 0, 12}] (* _Jean-François Alcover_, Nov 04 2021, after _Alois P. Heinz_ *)
%Y A347813 Column k=3 of A347811.
%Y A347813 Cf. A348201.
%K A347813 nonn,walk
%O A347813 0,2
%A A347813 _Alois P. Heinz_, Sep 14 2021