This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347814 #16 Nov 03 2021 08:34:01 %S A347814 1,1,7,29,173,937,5527,32309,193663,1166083,7093413,43373465, %T A347814 266712433,1646754449,10205571945,63442201565,395457341485, %U A347814 2470816812547,15469821698211,97035271087123,609662167537831,3836108862182671,24169777826484697,152468665277411533 %N A347814 Number of walks on square lattice from (n,0) to (0,0) using steps that decrease the Euclidean distance to the origin and that change each coordinate by at most 1. %C A347814 All terms are odd. %C A347814 Lattice points may have negative coordinates, and different walks may differ in length. All walks are self-avoiding. %H A347814 Alois P. Heinz, <a href="/A347814/b347814.txt">Table of n, a(n) for n = 0..1236</a> %H A347814 Alois P. Heinz, <a href="/A347814/a347814.gif">Animation of a(4) = 173 walks</a> %H A347814 Wikipedia, <a href="https://en.wikipedia.org/wiki/Lattice_path#Counting_lattice_paths">Counting lattice paths</a> %H A347814 Wikipedia, <a href="https://en.wikipedia.org/wiki/Self-avoiding_walk">Self-avoiding walk</a> %p A347814 s:= proc(n) option remember; %p A347814 `if`(n=0, [[]], map(x-> seq([x[], i], i=-1..1), s(n-1))) %p A347814 end: %p A347814 b:= proc(l) option remember; (n-> `if`(l=[0$n], 1, add((h-> `if`( %p A347814 add(i^2, i=h)<add(i^2, i=l), b(sort(h)), 0))(l+x), x=s(n))))(nops(l)) %p A347814 end: %p A347814 a:= n-> b([0, n]): %p A347814 seq(a(n), n=0..30); %t A347814 b[n_, k_] := b[n, k] = If[{n, k} == {0, 0}, 1, Sum[Sum[If[i^2 + j^2 < n^2 + k^2, b@@Sort[{i, j}], 0], {j, k-1, k+1}], {i, n-1, n+1}]]; %t A347814 a[n_] := b[0, n]; %t A347814 Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 03 2021, after _Alois P. Heinz_ *) %Y A347814 Column (or row) k=0 of A346538. %Y A347814 Cf. A002426. %K A347814 nonn,walk %O A347814 0,3 %A A347814 _Alois P. Heinz_, Sep 14 2021