This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347818 #58 Jan 09 2024 19:22:01 %S A347818 4,10,121,1003,10201,100013,1018081,10000043,100140049,1000000081, %T A347818 10000600009,100000000147,1000006000009,10000000000073, %U A347818 100000380000361,1000000000000003,10000001400000049,100000000000000831,1000000014000000049,10000000000000000049,100000000380000000361 %N A347818 Smallest n-digit brilliant number. %C A347818 A brilliant number is a semiprime (products of two primes, A001358) whose two prime factors have the same number of decimal digits. For an n-digit brilliant number, the two prime factors must each have ceiling(n/2) decimal digits. %C A347818 Since all brilliant numbers are semiprimes, a(n) >= A098449(n), also, a(n) = A098449(n) for n = 1, 2, 4, 16, 78, ..., are there infinitely many n such that a(n) = A098449(n)? %H A347818 Dario Alejandro Alpern, <a href="https://www.alpertron.com.ar/BRILLIANT.HTM">Brilliant numbers</a> %H A347818 World of Numbers, <a href="http://www.worldofnumbers.com/Smallest-n-digit-prp.pdf">Smallest n-digit prp</a> %F A347818 a(n) = 10^(n-1) + A083289(n). %F A347818 a(2*n) = 10^(2*n-1) + A084476(n). %F A347818 a(2*n+1) = A003617(n+1)^2. %F A347818 a(n) >= A098449(n). %e A347818 a(6) = 100013 = 103 * 971. %e A347818 a(7) = 1018081 = 1009 * 1009. %e A347818 a(8) = 10000043 = 2089 * 4787. %e A347818 a(9) = 100140049 = 10007 * 10007. %t A347818 Join[{4,10},Table[Module[{k=1},While[PrimeOmega[10^n+k]!=2||Length[ Union[ IntegerLength/@ FactorInteger[ 10^n+k][[;;,1]]]]!=1,k+=2];10^n+k],{n,2,20}]] (* _Harvey P. Dale_, Jan 09 2024 *) %o A347818 (PARI) isA078972(n)=my(f=factor(n)); (#f[, 1]==1 && f[1, 2]==2) || (#f[, 1]==2 && f[1, 2]==1 && f[2, 2]==1 && #Str(f[1, 1])==#Str(f[2, 1])) %o A347818 A084476(n)=for(k=0,10^n,if(isA078972(10^(2*n-1)+k),return(k))) %o A347818 a(n)=if(n%2,nextprime(10^((n-1)/2))^2,10^(n-1)+A084476(n/2)) \\ after _Charles R Greathouse IV_ in A078972 %Y A347818 Cf. A078972, A003617, A083289, A084475, A084476, A083128, A098449. %K A347818 nonn,base %O A347818 1,1 %A A347818 _Eric Chen_, Sep 15 2021