This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347829 #8 Sep 15 2021 10:25:35 %S A347829 1,3,11,36,118,351,1082,3093,8984,25164,70434,191808,525559,1404672, %T A347829 3755506,9906111,26057062,67703310,175745506,451392114,1157272780, %U A347829 2944110060,7468477985,18821686554,47337840114,118344795738,295156919969,732694232394,1814357671094 %N A347829 a(n) = Sum_{k=0..n} 2^k * A000041(k) * A000009(n-k). %F A347829 a(n) ~ A079555 * 2^n * A000041(n). %F A347829 a(n) ~ QPochhammer(-1/2, 1/2) * 2^(n-2) * exp(Pi*sqrt(2*n/3)) / (sqrt(3)*n). %F A347829 G.f.: Product_{k>=1} (1 + x^k) / (1 - 2^k*x^k). %t A347829 Table[Sum[2^k*PartitionsP[k]*PartitionsQ[n-k], {k, 0, n}], {n, 0, 50}] %t A347829 nmax = 50; CoefficientList[Series[Product[(1 + x^k) / (1 - 2^k*x^k), {k, 1, nmax}], {x, 0, nmax}], x] %Y A347829 Cf. A000009, A000041, A015128, A079555, A264685, A347830. %K A347829 nonn %O A347829 0,2 %A A347829 _Vaclav Kotesovec_, Sep 15 2021