A347834 An array A of the positive odd numbers, read by antidiagonals upwards, giving the present triangle T.
1, 3, 5, 7, 13, 21, 9, 29, 53, 85, 11, 37, 117, 213, 341, 15, 45, 149, 469, 853, 1365, 17, 61, 181, 597, 1877, 3413, 5461, 19, 69, 245, 725, 2389, 7509, 13653, 21845, 23, 77, 277, 981, 2901, 9557, 30037, 54613, 87381, 25, 93, 309, 1109, 3925, 11605, 38229, 120149, 218453, 349525
Offset: 1
Examples
The array A(k, n) begins: k\n 0 1 2 3 4 5 6 7 8 9 10 ... ------------------------------------------------------------------------- 1: 1 5 21 85 341 1365 5461 21845 87381 349525 1398101 2: 3 13 53 213 853 3413 13653 54613 218453 873813 3495253 3: 7 29 117 469 1877 7509 30037 120149 480597 1922389 7689557 4: 9 37 149 597 2389 9557 38229 152917 611669 2446677 9786709 5: 11 45 181 725 2901 11605 46421 185685 742741 2970965 11883861 6: 15 61 245 981 3925 15701 62805 251221 1004885 4019541 16078165 7: 17 69 277 1109 4437 17749 70997 283989 1135957 4543829 18175317 8: 19 77 309 1237 4949 19797 79189 316757 1267029 5068117 20272469 9: 23 93 373 1493 5973 23893 95573 382293 1529173 6116693 24466773 10: 25 101 405 1621 6485 25941 103765 415061 1660245 6640981 26563925 ... -------------------------------------------------------------------- The triangle T(k, n) begins: k\n 0 1 2 3 4 5 6 7 8 9 ... ------------------------------------------------------------ 1: 1 2: 3 5 3: 7 13 21 4: 9 29 53 85 5: 11 37 117 213 341 6: 15 45 149 469 853 1365 7: 17 61 181 597 1877 3413 5461 8: 19 69 245 725 2389 7509 13653 21845 9: 23 77 277 981 2901 9557 30037 54613 87381 10: 25 93 309 1109 3925 11605 38229 120149 218453 349525 ... ------------------------------------------------------------- Row index k of array A, for entries 5 (mod 8). 213 = 5 + 8*26. K = 28 is even, (3*231+1)/16 = 40, A065883(40) = 10, hence A(k, 0) = N' = (10-1)/3 = 3, and k = 2. Moreover, n = log_4((3*213 + 1)/(3*A(2,0) + 1)) = log_4(64) = 3. 213 = A(2, 3). 85 = 5 + 8*10. K = 10 is even, (3*85 + 1)/16 = 16, A065883(16) = 1, N' = (1-1)/3 = 0 is even, hence A(k, 0) = 4*0 + 1 = 1, k = 1. 85 = A(1, 3). 61 = 5 + 8*7, K = 7 is odd, k = (7+1)/2 + ceiling((7+1)/4) = 6, and n = log_4((3*61 + 1)/(3*A(6,0) + 1)) = 1. 61 = A(6, 1). ----------------------------------------------------------------------------
Links
- Paolo Xausa, Table of n, a(n) for n = 1..11325 (first 150 antidiagonals, flattened).
- Immo O. Kerner, Elementarer Lösungsansatz zum Collatz-Ulam-Problem CUP oder das "3a + 1" Problem, Version Nov 26 2000.
- Eric Weisstein's World of Mathematics, Collatz Problem
- Wikipedia, Collatz conjecture
- Index entries for sequences related to 3x+1 (or Collatz) problem
Crossrefs
Programs
-
Maple
# Seen as an array: A := (n, k) -> ((3*(n + floor(n/3)) - 1)*4^(k+1) - 2)/6: for n from 1 to 6 do seq(A(n, k), k = 0..9) od; # Seen as a triangle: T := (n, k) -> 2^(2*k + 1)*(floor((n - k)/3) - k + n - 1/3) - 1/3: for n from 1 to 9 do seq(T(n, k), k = 0..n-1) od; # Using row expansion: gf_row := k -> (1 / (x - 1) - A047395(k)) / (4*x - 1): for k from 1 to 10 do seq(coeff(series(gf_row(k), x, 11), x, n), n = 0..10) od; # Peter Luschny, Oct 09 2021
-
Mathematica
A347834[k_, n_] := (4^n*(6*(Floor[k/3] + k) - 2) - 1)/3; Table[A347834[k - n, n], {k, 10}, {n, 0, k - 1}] (* Paolo Xausa, Jun 26 2025 *)
Formula
Array A:
A(k, 0) = A047529(k) (the positive odd numbers {1, 3, 7} (mod 8));
A(k, n) = ((3* A(k, 0) + 1)*4^n - 1)/3, for k >= 1 and n >= 0.
Recurrence for rows k >= 1: A(k, n) = 4*A(k, n-1) + 1, for n >= 1, with A(k, 0) = 2*(k + floor(k/3)) - 1 = A047529(k).
Explicit form: A(k, n) = ((3*(k + floor(k/3)) - 1)*4^(n+1) - 2)/6, k >= 1, n >= 0. Here 3*(k + floor(k/3)) = A319451(k).
Hence A(k, n) = 5 + 8*(2*A(k, n-2)), for n >= 1, with A(k, 0) = 2*(k + floor(k/3)) - 1 = A047529(k), and 2*A(k, -1) = (A(k, 1) - 5)/8 = k - 1 + floor(k/3) (equals index n of A(k, 1) in the sequence (A004770(n+1))_{n >= 0}). A(k, -1) is half-integer if k = A007494(m) = m + ceiling(m/2), for m >= 1, and A(k, -1) = 2*K if k = 1 + 3*K = A016777(K), for K >= 0.
O.g.f.: expansion in z gives o.g.f.s for rows k, also for k = 0: -A007583; expansion in x gives o.g.f.s for columns n.
G(z, x) = (2*(-1 + 3*z + 3*z^2 + 7*z^3)*(1-x) - (1-4*x)*(1-z^3)) / (3*(1-x)*(1-4*x)*(1-z)*(1-z^3)).
Triangle T:
T(k, n) = A(k - n, n), for k >= 1 and n = 0..k-1.
A(k, n) = [x^n] (1/(x - 1) - A047395(k)) / (4*x - 1). - Peter Luschny, Oct 09 2021
Comments