cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347836 a(n) = 8*(n + floor(n/3)) - 3; second column of A347834.

Original entry on oeis.org

5, 13, 29, 37, 45, 61, 69, 77, 93, 101, 109, 125, 133, 141, 157, 165, 173, 189, 197, 205, 221, 229, 237, 253, 261, 269, 285, 293, 301, 317, 325, 333, 349, 357, 365, 381, 389, 397, 413, 421, 429, 445, 453, 461, 477, 485, 493
Offset: 1

Views

Author

Wolfdieter Lang, Oct 07 2021

Keywords

Crossrefs

Cf. A047529 (first column), A178415, A265667, A319451, A347834, A347837 (third column).

Programs

  • Maple
    seq(8*(n + floor(n/3)) - 3, n = 1..47); # Peter Luschny, Oct 10 2021
  • Mathematica
    A347836[n_] := 8*(n + Floor[n/3]) - 3; Array[A347836, 50] (* or *)
    LinearRecurrence[{1, 0, 1, -1}, {5, 13, 29, 37}, 50] (* Paolo Xausa, Feb 27 2024 *)

Formula

a(n) = A347834(n, 1) = A178415(A265667(n), 2), for n >= 1.
a(n) = ((3*A047529(n) + 1)*4 - 1)/3 = ((3*(n + floor(n/3)) - 1)*8 - 1)/3 = ((A319451(n) - 1)*8 - 1)/3, for n >= 1.
O.g.f.: G(x) = (-3 + 8*x + 8*x^2 + 19*x^3)/((1 - x)*(1 - x^3)), with a(0) = -3.