cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347838 Positive numbers that are congruent to 2, 5, or 11 modulo 12.

This page as a plain text file.
%I A347838 #16 Dec 30 2021 09:21:31
%S A347838 2,5,11,14,17,23,26,29,35,38,41,47,50,53,59,62,65,71,74,77,83,86,89,
%T A347838 95,98,101,107,110,113,119,122,125,131,134,137,143,146,149,155,158,
%U A347838 161,167,170,173,179,182,185,191,194,197,203,206,209,215,218,221,227,230,233,239
%N A347838 Positive numbers that are congruent to 2, 5, or 11 modulo 12.
%C A347838 This sequence follows from the first column sequence of the array A347834, namely A047529 ({1,3,7} (mod 8)), as given in the formula below.
%C A347838 Together with A017617, the positive integers congruent to 8 modulo 12, one obtains A016789, the positive integers congruent to 2 modulo 3. See the array A347839.
%H A347838 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,1,-1).
%F A347838 a(n) = (3*A047529(n) + 1)/2.
%F A347838 Trisection: a(3*k+1) = 2 + 12*k, a(3*k+2) = 5 + 12*k, a(3*k+3) = 11 + 12*k, or with a(3*k) = -1 + 12*k for k >= 0.
%F A347838 O.g.f. with a(0) =-1: G(x) = (-1 + 3*x + 3*x^2 + 7*x^3)/((1 - x)*(1 - x^3)) = -6/(1-x) + 4/(1-x)^2 + (1 + x)/(1 + x + x^2). Note that (1 - x)*(1 - x^3) = (1-x)^2*(1 + x + x^2) =  1 - x - x^3 + x^4.
%F A347838 a(n) = a(n-1) + a(n-3) - a(n-4), for n >= 4, given a(n) for 0..3, with a(0) = -1.
%F A347838 a(n) = 2*b(n) + 3*b(n-1) + 6*b(n-2) + b(n-3), with b(n) = floor((n+2)/3) = A002264(n+2).
%F A347838 a(n) = -1 + 3*n + 3*floor(n/3) (from the partial fraction decomposition of G).
%F A347838 E.g.f.: 1 + 2*exp(x)*(2*x - 1) + exp(-x/2)*(3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/3. - _Stefano Spezia_, Dec 08 2021
%F A347838 Sum_{n>=1} (-1)^(n+1)/a(n) = ((sqrt(2)+1)*Pi + sqrt(3)*log(sqrt(3)+2) + sqrt(6)*log(5-2*sqrt(6)))/12. - _Amiram Eldar_, Dec 30 2021
%t A347838 Map[(3 # + 1)/2 &, LinearRecurrence[{1, 0, 1, -1}, {1, 3, 7, 9}, 60]] (* _Michael De Vlieger_, Oct 21 2021 *)
%Y A347838 Cf. A002264, A016921, A016789, A017617, A017653, A040117(k+1), A047261, A047529, A102283, A347834, A347839.
%K A347838 nonn,easy
%O A347838 1,1
%A A347838 _Wolfdieter Lang_, Oct 21 2021