cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347839 An array of the positive integers congruent to 2 modulo 3 (A016789), read by antidiagonals upwards, giving the present triangle.

This page as a plain text file.
%I A347839 #18 Nov 27 2021 11:58:26
%S A347839 2,5,8,11,20,32,14,44,80,128,17,56,176,320,512,23,68,224,704,1280,
%T A347839 2048,26,92,272,896,2816,5120,8192,29,104,368,1088,3584,11264,20480,
%U A347839 32768,35,116,416,1472,4352,14336,45056,81920,131072,38,140,464,1664,5888,17408,57344,180224,327680,524288
%N A347839 An array of the positive integers congruent to 2 modulo 3 (A016789), read by antidiagonals upwards, giving the present triangle.
%C A347839 This array a = (a(k, n))_{k >= 1,n >= 0} is underlying array A of A347834. See the first formula. It has a simple recurrence for the rows k, given the first column a(k, 0) = A347838(k), which lists the positive integers congruent to {2, 5, 11} modulo 12.
%C A347839 In the array one can add the negative of the powers of 4 as row for k = 0, i.e., -A000302(n), for n >= 0.
%C A347839 All positive numbers congruent to 2 modulo 3 (A017617) appear once in this array. Proof from the array A of A347834 of the positive integers congruent to {1,3,5,7} modulo 8, and the present first formula: The members of column n = 0 give all the positive integers congruent to {2, 5, 11} modulo 12 once, and the members of columns n >= 1 give all the positive integers congruent to 8 modulo 12 (A017617) once. These members combined lead to the positive integers congruent to 2 modulo 3.
%F A347839 Array a:
%F A347839 a(k, n) = (3*A(k, n) + 1)/2, with the array A from A347834, for k >= 1, and n >= 0.
%F A347839 a(k, n) = 4^n*A347838(k) = 4^n*(2 + 3*k + 3*floor((k + 1)/3)).
%F A347839 Recurrence for rows k: a(k, n) = 4*a(k, n-1), for n >= 1, with a(k, 0) = A347838(k).
%F A347839 O.g.f.: expansion in z gives the o.g.f.s for rows k, also for k = 0: -A000302; expansion in x gives the o.g.f.s for columns n.
%F A347839 G(z, x) = (-1 + 3*z + 3*z^2 + 7*z^3)/((1 - z)*(1 - z^3)*(1 - 4*x)).
%F A347839 Triangle t:
%F A347839 t(k, n) = a(k-n, n), for k >= 1, and n = 0, 1, ..., k-1.
%e A347839 The array a(k, n) begins:
%e A347839 k \ n  0   1   2    3    4     5      6      7       8       9       10 ...
%e A347839 ---------------------------------------------------------------------------
%e A347839 1:     2   8  32  128  512  2048   8192  32768  131072  524288  2097152 ...
%e A347839 2:     5  20  80  320 1280  5120  20480  81920  327680 1310720  5242880 ...
%e A347839 3:    11  44 176  704 2816 11264  45056 180224  720896 2883584 11534336 ...
%e A347839 4:    14  56 224  896 3584 14336  57344 229376  917504 3670016 14680064 ...
%e A347839 5:    17  68 272 1088 4352 17408  69632 278528 1114112 4456448 17825792 ...
%e A347839 6:    23  92 368 1472 5888 23552  94208 376832 1507328 6029312 24117248 ...
%e A347839 7:    26 104 416 1664 6656 26624 106496 425984 1703936 6815744 27262976 ...
%e A347839 8:    29 116 464 1856 7424 29696 118784 475136 1900544 7602176 30408704 ...
%e A347839 9:    35 140 560 2240 8960 35840 143360 573440 2293760 9175040 36700160 ...
%e A347839 10:   38 152 608 2432 9728 38912 155648 622592 2490368 9961472 39845888 ...
%e A347839 ...
%e A347839 ----------------------------------------------------------------------------
%e A347839 The triangle t(n,k) begins:
%e A347839 k \ n  0   1   2    3    4     5     6      7      8      9 ...
%e A347839 ---------------------------------------------------------------
%e A347839 1:     2
%e A347839 2:     5   8
%e A347839 3:    11  20  32
%e A347839 4:    14  44  80  128
%e A347839 5:    17  56 176  320  512
%e A347839 6:    23  68 224  704 1280  2048
%e A347839 7:    26  92 272  896 2816  5120  8192
%e A347839 8:    29 104 368 1088 3584 11264 20480  32768
%e A347839 9:    35 116 416 1472 4352 14336 45056  81920 131072
%e A347839 10:   38 140 464 1664 5888 17408 57344 180224 327680 524288
%e A347839 ...
%e A347839 -----------------------------------------------------------------
%p A347839 A := (n, k) -> 4^n*(3*(k + iquo(k, 3)) - 1):
%p A347839 for k from 1 to 10 do seq(A(n, k), n = 0..10) od;
%p A347839 # Alternatively:
%p A347839 gf  := n -> (4^n*((z*(z*(7*z + 3) + 3) - 1)))/((z - 1)^2*(1 + z + z^2)):
%p A347839 ser := n -> series(gf(n), z, 12):
%p A347839 col := (n, len) -> seq(coeff(ser(n), z, k), k = 1..len):
%p A347839 seq(print(col(n, 10)), n = 0..10); # _Peter Luschny_, Oct 26 2021
%t A347839 A[n_, k_] := 4^n (3(k + Quotient[k, 3]) - 1);
%t A347839 Table[A[n-k, k], {n, 1, 10}, {k, n, 1, -1}] // Flatten (* _Jean-François Alcover_, Nov 07 2021, from Maple code *)
%Y A347839 Cf. A347834, A016789, A017617.
%Y A347839 The rows k are given by -A000302 (for k=0), A004171, A003947(n+1), A002089, 2*A002042, ...
%Y A347839 The columns n are given by 4^n*A347838 for n >= 0.
%K A347839 nonn,easy,tabl
%O A347839 1,1
%A A347839 _Wolfdieter Lang_, Oct 21 2021