This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A347864 #22 Nov 25 2023 23:54:42 %S A347864 2,3,5,7,13,17,23,29,31,37,43,47,53,59,67,71,73,79,83,97,103,107,113, %T A347864 131,137,139,167,173,179,197,223,229,233,239,271,283,293,307,311,313, %U A347864 317,331,337,347,353,359,367,373,379,383,397,431,433,439,443,467,479,503 %N A347864 Left- or right-truncatable primes, restricted to one consecutive zero. %C A347864 There are 16484138 primes in this list, in total. The largest one has 60 digits and there is only one of that length. %o A347864 (Python) %o A347864 from sympy import isprime %o A347864 route = set({}) %o A347864 nums = [i*(10**j) for i in range(1, 10) for j in range(2)] %o A347864 def addnum(a): %o A347864 global route %o A347864 for j in nums: %o A347864 b = int("{}{}".format(a, j)) %o A347864 if isprime(b): %o A347864 if b not in route: %o A347864 route.add(b) %o A347864 addnum(b) %o A347864 for j in nums: %o A347864 b = int("{}{}".format(j, a)) %o A347864 if isprime(b): %o A347864 if b not in route: %o A347864 route.add(b) %o A347864 addnum(b) %o A347864 def run(): %o A347864 for i in nums: %o A347864 if isprime(i): %o A347864 addnum(i) %Y A347864 Left- or right-truncatable primes, excluding all 0s: A137812. %Y A347864 The number of primes of length n following these rules: A346662. %K A347864 nonn,fini %O A347864 1,1 %A A347864 _Timothy Smith_, Jan 25 2022