cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347897 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(tan(x)/k).

This page as a plain text file.
%I A347897 #10 Sep 18 2021 11:37:55
%S A347897 1,0,2,6,36,250,1744,18312,158960,2046672,23152216,332066240,
%T A347897 4628867680,75851021376,1225796994720,22407297808560,420285940934912,
%U A347897 8427749606274560,177279678667864320,3930905732908421376,91016443490231306112,2210008179756128156160,55958663509700641300736
%N A347897 E.g.f.: Product_{k>=1} 1 / (1 - x^k)^(tan(x)/k).
%F A347897 E.g.f.: exp( tan(x) * Sum_{k>=1} d(k)*x^k/k ).
%o A347897 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(1/prod(k=1, N, (1-x^k)^(tan(x)/k))))
%o A347897 (PARI) N=40; x='x+O('x^N); Vec(serlaplace(exp(tan(x)*sum(k=1, N, numdiv(k)*x^k/k))))
%Y A347897 Cf. A000005 (d(n)), A346545, A347895, A347896.
%K A347897 nonn
%O A347897 0,3
%A A347897 _Seiichi Manyama_, Sep 18 2021