cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347901 Decimal expansion of a constant related to the asymptotics of A005169.

This page as a plain text file.
%I A347901 #10 Dec 13 2024 10:12:46
%S A347901 5,7,6,1,4,8,7,6,9,1,4,2,7,5,6,6,0,2,2,9,7,8,6,8,5,7,3,7,1,9,9,3,8,7,
%T A347901 8,2,3,5,4,7,2,4,6,6,3,1,1,8,9,7,4,4,6,8,6,8,5,1,5,6,5,3,4,3,1,9,4,6,
%U A347901 8,2,2,9,3,7,4,9,9,2,4,0,2,0,0,3,9,0,7,4,2,2,0,9,9,3,2,9,5,5,0,8,5,0,0,9,6,6
%N A347901 Decimal expansion of a constant related to the asymptotics of A005169.
%D A347901 Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 381.
%H A347901 A. M. Odlyzko and H. S. Wilf, <a href="http://www.jstor.org/stable/2322898">The editor's corner: n coins in a fountain</a>, Amer. Math. Monthly, 95 (1988), 840-843.
%F A347901 Lowest root of the equation Sum_{k>=0} (-1)^k * r^(k^2) / QPochhammer(r, r, k) = 0.
%e A347901 0.576148769142756602297868573719938782354724663118974468685156534319...
%t A347901 FindRoot[Sum[(-1)^k*r^(k^2)/QPochhammer[r, r, k], {k, 0, 1000}] == 0, {r, 1/2}, WorkingPrecision -> 120]
%Y A347901 Cf. A005169, A168445, A226999, A285636, A285903, A285637, A305840.
%K A347901 nonn,cons
%O A347901 0,1
%A A347901 _Vaclav Kotesovec_, Sep 18 2021