cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A347904 Array read by antidiagonals, m, n >= 1: T(m,n) is the first prime (after the two initial terms) in the Fibonacci-like sequence with initial terms m and n, or 0 if no such prime exists.

This page as a plain text file.
%I A347904 #9 Sep 20 2021 11:49:30
%S A347904 2,3,3,7,0,5,5,5,5,5,11,0,0,0,7,7,7,7,7,7,7,23,0,13,0,11,0,17,17,41,0,
%T A347904 23,13,0,11,19,19,0,17,0,0,0,13,0,11,11,11,11,11,11,11,11,11,11,11,23,
%U A347904 0,0,0,19,0,17,0,0,0,13,13,13,13,13,13,13,13,13,13,13,13,13
%N A347904 Array read by antidiagonals, m, n >= 1: T(m,n) is the first prime (after the two initial terms) in the Fibonacci-like sequence with initial terms m and n, or 0 if no such prime exists.
%C A347904 There are cases where T(m,n) = 0 even when m and n are coprime; see A082411, A083104, A083105, A083216, and A221286. The smallest (in the sense that m+n is as small as possible) known case where this occurs appears to be m = 106276436867, n = 35256392432 (Vsemirnov's sequence, A221286).
%F A347904 T(m,n) = 0 if m and n have a common factor.
%F A347904 T(m,n) = T(n,m+n) if m+n is not prime, otherwise T(m,n) = m+n.
%e A347904 Array begins:
%e A347904   m\n|  1  2  3  4  5  6  7  8  9 10  11 12  13  14 15 16
%e A347904   ---+---------------------------------------------------
%e A347904    1 |  2  3  7  5 11  7 23 17 19 11  23 13  41  29 31 17
%e A347904    2 |  3  0  5  0  7  0 41  0 11  0  13  0  43   0 17  0
%e A347904    3 |  5  5  0  7 13  0 17 11  0 13 103  0  29  17  0 19
%e A347904    4 |  5  0  7  0 23  0 11  0 13  0  41  0  17   0 19  0
%e A347904    5 |  7  7 11 13  0 11 19 13 23  0  43 17  31  19  0 37
%e A347904    6 |  7  0  0  0 11  0 13  0  0  0  17  0  19   0  0  0
%e A347904    7 | 17 11 13 11 17 13  0 23 41 17  29 19  53   0 37 23
%e A347904    8 | 19  0 11  0 13  0 37  0 17  0  19  0  89   0 23  0
%e A347904    9 | 11 11  0 13 19  0 23 17  0 19  31  0 149  23  0 41
%e A347904   10 | 11  0 13  0  0  0 17  0 19  0  53  0  23   0  0  0
%e A347904   11 | 13 13 17 19 37 17 43 19 29 31   0 23  37 103 41 43
%e A347904   12 | 13  0  0  0 17  0 19  0  0  0  23  0 101   0  0  0
%e A347904   13 | 29 17 19 17 23 19 47 29 31 23  59 37   0  41 43 29
%e A347904   14 | 31  0 17  0 19  0  0  0 23  0  61  0  67   0 29  0
%e A347904   15 | 17 17  0 19  0  0 29 23  0  0  37  0  41  29  0 31
%e A347904   16 | 17  0 19  0 47  0 23  0 59  0 103  0  29   0 31  0
%e A347904 T(2,7) = 41, because the first prime in A022113, excluding the two initial terms, is 41.
%o A347904 (Python)
%o A347904 # Note that in the (rare) case when m and n are coprime but there are no primes in the Fibonacci-like sequence, this function will go into an infinite loop.
%o A347904 from sympy import isprime,gcd
%o A347904 def A347904(m,n):
%o A347904     if gcd(m,n) != 1:
%o A347904         return 0
%o A347904     m,n = n,m+n
%o A347904     while not isprime(n):
%o A347904         m,n = n,m+n
%o A347904     return n
%Y A347904 Cf. A022113, A082411, A083104, A083105, A083216, A221286, A347905.
%K A347904 nonn,tabl
%O A347904 1,1
%A A347904 _Pontus von Brömssen_, Sep 18 2021