A347908 Even numbers k such that 2^(2*k) == 2 (mod k).
2, 14, 1022, 20066, 485918, 2531678, 3677198, 8277458, 8893262, 21122318, 26358638, 39852014, 42448478, 76712318, 131492498, 144322478, 164360606, 175126478, 176647378, 196705598, 249126626, 306789074, 317051378, 438023138, 497041538, 696970718, 996520658
Offset: 1
Keywords
Examples
14 is a term since 14 divides 2^28 - 2.
Links
- Jianing Song, Table of n, a(n) for n = 1..1298 (contains all terms below 10^15; based on Max Alekseyev's b-file for A130421)
Programs
-
PARI
isA347908(k) = if(k%4==2, k=k>>1; if(isprime(k) && k!=7, 0, Mod(2, k)^(4*k-1)==1), 0)
Formula
a(n) = A347907(n)*2.
Comments